ترغب بنشر مسار تعليمي؟ اضغط هنا

Pareto-Frontier-aware Neural Architecture Generation for Diverse Budgets

140   0   0.0 ( 0 )
 نشر من قبل Yong Guo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Designing feasible and effective architectures under diverse computation budgets incurred by different applications/devices is essential for deploying deep models in practice. Existing methods often perform an independent architecture search for each target budget, which is very inefficient yet unnecessary. Moreover, the repeated independent search manner would inevitably ignore the common knowledge among different search processes and hamper the search performance. To address these issues, we seek to train a general architecture generator that automatically produces effective architectures for an arbitrary budget merely via model inference. To this end, we propose a Pareto-Frontier-aware Neural Architecture Generator (NAG) which takes an arbitrary budget as input and produces the Pareto optimal architecture for the target budget. We train NAG by learning the Pareto frontier (i.e., the set of Pareto optimal architectures) over model performance and computational cost (e.g., latency). Extensive experiments on three platforms (i.e., mobile, CPU, and GPU) show the superiority of the proposed method over existing NAS methods.

قيم البحث

اقرأ أيضاً

Recent breakthroughs in Neural Architectural Search (NAS) have achieved state-of-the-art performance in many tasks such as image classification and language understanding. However, most existing works only optimize for model accuracy and largely igno re other important factors imposed by the underlying hardware and devices, such as latency and energy, when making inference. In this paper, we first introduce the problem of NAS and provide a survey on recent works. Then we deep dive into two recent advancements on extending NAS into multiple-objective frameworks: MONAS and DPP-Net. Both MONAS and DPP-Net are capable of optimizing accuracy and other objectives imposed by devices, searching for neural architectures that can be best deployed on a wide spectrum of devices: from embedded systems and mobile devices to workstations. Experimental results are poised to show that architectures found by MONAS and DPP-Net achieves Pareto optimality w.r.t the given objectives for various devices.
Existing neural architecture search (NAS) methods often return an architecture with good search performance but generalizes poorly to the test setting. To achieve better generalization, we propose a novel neighborhood-aware NAS formulation to identif y flat-minima architectures in the search space, with the assumption that flat minima generalize better than sharp minima. The phrase flat-minima architecture refers to architectures whose performance is stable under small perturbations in the architecture (e.g., replacing a convolution with a skip connection). Our formulation takes the flatness of an architecture into account by aggregating the performance over the neighborhood of this architecture. We demonstrate a principled way to apply our formulation to existing search algorithms, including sampling-based algorithms and gradient-based algorithms. To facilitate the application to gradient-based algorithms, we also propose a differentiable representation for the neighborhood of architectures. Based on our formulation, we propose neighborhood-aware random search (NA-RS) and neighborhood-aware differentiable architecture search (NA-DARTS). Notably, by simply augmenting DARTS with our formulation, NA-DARTS finds architectures that perform better or on par with those found by state-of-the-art NAS methods on established benchmarks, including CIFAR-10, CIFAR-100 and ImageNet.
Recent state-of-the-art methods for neural architecture search (NAS) exploit gradient-based optimization by relaxing the problem into continuous optimization over architectures and shared-weights, a noisy process that remains poorly understood. We ar gue for the study of single-level empirical risk minimization to understand NAS with weight-sharing, reducing the design of NAS methods to devising optimizers and regularizers that can quickly obtain high-quality solutions to this problem. Invoking the theory of mirror descent, we present a geometry-aware framework that exploits the underlying structure of this optimization to return sparse architectural parameters, leading to simple yet novel algorithms that enjoy fast convergence guarantees and achieve state-of-the-art accuracy on the latest NAS benchmarks in computer vision. Notably, we exceed the best published results for both CIFAR and ImageNet on both the DARTS search space and NAS-Bench201; on the latter we achieve near-oracle-optimal performance on CIFAR-10 and CIFAR-100. Together, our theory and experiments demonstrate a principled way to co-design optimizers and continuous relaxations of discrete NAS search spaces.
163 - Lianbo Ma , Nan Li 2021
In the deployment of deep neural models, how to effectively and automatically find feasible deep models under diverse design objectives is fundamental. Most existing neural architecture search (NAS) methods utilize surrogates to predict the detailed performance (e.g., accuracy and model size) of a candidate architecture during the search, which however is complicated and inefficient. In contrast, we aim to learn an efficient Pareto classifier to simplify the search process of NAS by transforming the complex multi-objective NAS task into a simple Pareto-dominance classification task. To this end, we propose a classification-wise Pareto evolution approach for one-shot NAS, where an online classifier is trained to predict the dominance relationship between the candidate and constructed reference architectures, instead of using surrogates to fit the objective functions. The main contribution of this study is to change supernet adaption into a Pareto classifier. Besides, we design two adaptive schemes to select the reference set of architectures for constructing classification boundary and regulate the rate of positive samples over negative ones, respectively. We compare the proposed evolution approach with state-of-the-art approaches on widely-used benchmark datasets, and experimental results indicate that the proposed approach outperforms other approaches and have found a number of neural architectures with different model sizes ranging from 2M to 6M under diverse objectives and constraints.
Resource is an important constraint when deploying Deep Neural Networks (DNNs) on mobile and edge devices. Existing works commonly adopt the cell-based search approach, which limits the flexibility of network patterns in learned cell structures. More over, due to the topology-agnostic nature of existing works, including both cell-based and node-based approaches, the search process is time consuming and the performance of found architecture may be sub-optimal. To address these problems, we propose AutoShrink, a topology-aware Neural Architecture Search(NAS) for searching efficient building blocks of neural architectures. Our method is node-based and thus can learn flexible network patterns in cell structures within a topological search space. Directed Acyclic Graphs (DAGs) are used to abstract DNN architectures and progressively optimize the cell structure through edge shrinking. As the search space intrinsically reduces as the edges are progressively shrunk, AutoShrink explores more flexible search space with even less search time. We evaluate AutoShrink on image classification and language tasks by crafting ShrinkCNN and ShrinkRNN models. ShrinkCNN is able to achieve up to 48% parameter reduction and save 34% Multiply-Accumulates (MACs) on ImageNet-1K with comparable accuracy of state-of-the-art (SOTA) models. Specifically, both ShrinkCNN and ShrinkRNN are crafted within 1.5 GPU hours, which is 7.2x and 6.7x faster than the crafting time of SOTA CNN and RNN models, respectively.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا