ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain wall diode based on functionally graded Dzyaloshinskii-Moriya interaction

373   0   0.0 ( 0 )
 نشر من قبل Kostiantyn Yershov V.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a general approach for studying the dynamics of domain walls in biaxial ferromagnetic stripes with functionally graded Dzyaloshinskii-Moriya interaction (DMI). By engineering the spatial profile of the DMI parameter we propose the concept of a diode, which implements filtering of domain walls of certain topological charge and helicity. We base our study on phenomenological Landau-Lifshitz-Gilbert equations with additional Zhang-Li spin-transfer terms using a collective variable approach. In the effective equations of motion the gradients of DMI play the role of a driving force which competes with current driving. All analytical predictions are confirmed by numerical simulations.

قيم البحث

اقرأ أيضاً

Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions have started to play an important role in modern magnetism because of their extraordinary stability, which can be exploited in the production of memory devices. Recen tly, a novel type of antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction (DMI), has been uncovered and found to influence the formation of topological defects. Exploring how the DMI affects the dynamics of topological defects is therefore an important task. Here we investigate the dynamic domain wall (DW) under a strong DMI and find that the DMI induces an annihilation of topological vertical Bloch lines (VBLs) by lifting the four-fold degeneracy of the VBL. As a result, velocity reduction originating from the Walker breakdown is completely suppressed, leading to a soliton-like constant velocity of the DW. Furthermore, the strength of the DMI, which is the key factor for soliton-like DW motion, can be quantified without any side effects possibly arising from current-induced torques or extrinsic pinnings in magnetic films. Our results therefore shed light on the physics of dynamic topological defects, which paves the way for future work in topology-based memory applications.
We have studied a series of Pt/Co/M epitaxial trilayers, in which Co is sandwiched between Pt and a non magnetic layer M (Pt, Ir, Cu, Al). Using polar magneto-optical Kerr microscopy, we show that the field- induced domain wall speeds are strongly de pendent on the nature of the top layer, they increase going from M=Pt to lighter top metallic overlayers, and can reach several 100 m/s for Pt/Co/Al. The DW dynamics is consistent with the presence of chiral Neel walls stabilized by interfacial Dzyaloshinskii-Moriya interaction (DMI) whose strength increases going from Pt to Al top layers. This is explained by the presence of DMI with opposite sign at the Pt/Co and Co/M interfaces, the latter increasing in strength going towards heavier atoms, possibly due to the increasing spin-orbit interaction. This work shows that in non-centrosymmetric trilayers the domain wall dynamics can be finely tuned by engineering the DMI strength, in view of efficient devices for logic and spitronics applications.
142 - B. Y. Pan , H. C. Xu , Y. Liu 2020
CrAs is a well-known helimagnet with the double-helix structure originating from the competition between the Dzyaloshinskii-Moriya interaction (DMI) and antiferromagnetic exchange interaction $J$. By resonant soft X-ray scattering (RSXS), we observe the magnetic peak (0~0~$q_m$) that emerges at the helical transition with $T_S$ $approx$ 267.5 K. Intriguingly, the helimagnetic domains significantly shrink on cooling below $sim$255 K, opposite to the conventional thermal effect. The weakening of DMI on cooling is found to play a critical role here. It causes the helical wave vector to vary, ordered spins to rotate, and extra helimagnetic domain boundaries to form at local defects, thus leading to the anomalous shrinkage of helimagnetic domains. Our results indicate that the size of magnetic helical domains can be controlled by tuning DMI in certain helimagnets.
We measure and analyze the chirality of the Dzyaloshinskii-Moriya interaction (DMI) stabilized spin textures in multilayers of Ta/Co$_{20}$Fe$_{60}$B$_{20}$/MgO. The effective DMI is measured experimentally using domain wall motion measurements, both in the presence (using spin orbit torques) and absence of driving currents (using magnetic fields). We observe that the current-induced domain wall motion yields a change in effective DMI magnitude and opposite domain wall chirality when compared to field-induced domain wall motion (without current). We explore this effect, which we refer to as current-induced DMI, by providing possible explanations for its emergence, and explore the possibilty of its manifestation in the framework of recent theoretical predictions of DMI modifications due to spin currents.
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii -Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here, we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal. The density functional theory and the tight-binding model calculations reveal that asymmetric electron occupation in orbitals gives rise to this correlation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا