ﻻ يوجد ملخص باللغة العربية
Monocular depth prediction is an important task in scene understanding. It aims to predict the dense depth of a single RGB image. With the development of deep learning, the performance of this task has made great improvements. However, two issues remain unresolved: (1) The deep feature encodes the wrong farthest region in a scene, which leads to a distorted 3D structure of the predicted depth; (2) The low-level features are insufficient utilized, which makes it even harder to estimate the depth near the edge with sudden depth change. To tackle these two issues, we propose the Boundary-induced and Scene-aggregated network (BS-Net). In this network, the Depth Correlation Encoder (DCE) is first designed to obtain the contextual correlations between the regions in an image, and perceive the farthest region by considering the correlations. Meanwhile, the Bottom-Up Boundary Fusion (BUBF) module is designed to extract accurate boundary that indicates depth change. Finally, the Stripe Refinement module (SRM) is designed to refine the dense depth induced by the boundary cue, which improves the boundary accuracy of the predicted depth. Several experimental results on the NYUD v2 dataset and xff{the iBims-1 dataset} illustrate the state-of-the-art performance of the proposed approach. And the SUN-RGBD dataset is employed to evaluate the generalization of our method. Code is available at https://github.com/XuefengBUPT/BS-Net.
Self-supervised learning for monocular depth estimation is widely investigated as an alternative to supervised learning approach, that requires a lot of ground truths. Previous works have successfully improved the accuracy of depth estimation by modi
In this paper, we propose a Bidirectional Attention Network (BANet), an end-to-end framework for monocular depth estimation (MDE) that addresses the limitation of effectively integrating local and global information in convolutional neural networks.
In this paper, we tackle the problem of estimating the depth of a scene from a monocular video sequence. In particular, we handle challenging scenarios, such as non-translational camera motion and dynamic scenes, where traditional structure from moti
Monocular depth estimation is an essential task for scene understanding. The underlying structure of objects and stuff in a complex scene is critical to recovering accurate and visually-pleasing depth maps. Global structure conveys scene layouts, whi
Monocular 3D object detection is a key problem for autonomous vehicles, as it provides a solution with simple configuration compared to typical multi-sensor systems. The main challenge in monocular 3D detection lies in accurately predicting object de