ﻻ يوجد ملخص باللغة العربية
In many sequential decision-making problems, the individuals are split into several batches and the decision-maker is only allowed to change her policy at the end of batches. These batch problems have a large number of applications, ranging from clinical trials to crowdsourcing. Motivated by this, we study the stochastic contextual bandit problem for general reward distributions under the batched setting. We propose the BatchNeuralUCB algorithm which combines neural networks with optimism to address the exploration-exploitation tradeoff while keeping the total number of batches limited. We study BatchNeuralUCB under both fixed and adaptive batch size settings and prove that it achieves the same regret as the fully sequential version while reducing the number of policy updates considerably. We confirm our theoretical results via simulations on both synthetic and real-world datasets.
We present simple and efficient algorithms for the batched stochastic multi-armed bandit and batched stochastic linear bandit problems. We prove bounds for their expected regrets that improve over the best-known regret bounds for any number of batche
We introduce the factored bandits model, which is a framework for learning with limited (bandit) feedback, where actions can be decomposed into a Cartesian product of atomic actions. Factored bandits incorporate rank-1 bandits as a special case, but
Contextual bandits often provide simple and effective personalization in decision making problems, making them popular tools to deliver personalized interventions in mobile health as well as other health applications. However, when bandits are deploy
This paper studies regret minimization in multi-armed bandits, a classical online learning problem. To develop more statistically-efficient algorithms, we propose to use the assumption of a random-effect model. In this model, the mean rewards of arms
We introduce a new class of reinforcement learning methods referred to as {em episodic multi-armed bandits} (eMAB). In eMAB the learner proceeds in {em episodes}, each composed of several {em steps}, in which it chooses an action and observes a feedb