ترغب بنشر مسار تعليمي؟ اضغط هنا

BPF for storage: an exokernel-inspired approach

242   0   0.0 ( 0 )
 نشر من قبل Asaf Cidon
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The overhead of the kernel storage path accounts for half of the access latency for new NVMe storage devices. We explore using BPF to reduce this overhead, by injecting user-defined functions deep in the kernels I/O processing stack. When issuing a series of dependent I/O requests, this approach can increase IOPS by over 2.5$times$ and cut latency by half, by bypassing kernel layers and avoiding user-kernel boundary crossings. However, we must avoid losing important properties when bypassing the file system and block layer such as the safety guarantees of the file system and translation between physical blocks addresses and file offsets. We sketch potential solutions to these problems, inspired by exokernel file systems from the late 90s, whose time, we believe, has finally come!



قيم البحث

اقرأ أيضاً

Host-side page victimizations can easily overflow the SSD internal buffer, which interferes I/O services of diverse user applications thereby degrading user-level experiences. To address this, we propose FastDrain, a co-design of OS kernel and flash firmware to avoid the buffer overflow, caused by page victimizations. Specifically, FastDrain can detect a triggering point where a near-future page victimization introduces an overflow of the SSD internal buffer. Our new flash firmware then speculatively scrubs the buffer space to accommodate the requests caused by the page victimization. In parallel, our new OS kernel design controls the traffic of page victimizations by considering the target device buffer status, which can further reduce the risk of buffer overflow. To secure more buffer spaces, we also design a latency-aware FTL, which dumps the dirty data only to the fast flash pages. Our evaluation results reveal that FastDrain reduces the 99th response time of user applications by 84%, compared to a conventional system.
Compressed videos constitute 70% of Internet traffic, and video upload growth rates far outpace compute and storage improvement trends. Past work in leveraging perceptual cues like saliency, i.e., regions where viewers focus their perceptual attentio n, reduces compressed video size while maintaining perceptual quality, but requires significant changes to video codecs and ignores the data management of this perceptual information. In this paper, we propose Vignette, a compression technique and storage manager for perception-based video compression. Vignette complements off-the-shelf compression software and hardware codec implementations. Vignettes compression technique uses a neural network to predict saliency information used during transcoding, and its storage manager integrates perceptual information into the video storage system to support a perceptual compression feedback loop. Vignettes saliency-based optimizations reduce storage by up to 95% with minimal quality loss, and Vignette videos lead to power savings of 50% on mobile phones during video playback. Our results demonstrate the benefit of embedding information about the human visual system into the architecture of video storage systems.
Data sharing is essential in the numerical simulations research. We introduce a data repository, DataVault, that is designed for data sharing, search and analysis. A comparative study of existing repositories is performed to analyze features that are critical to a data repository. We describe the architecture, workflow, and deployment of DataVault, and provide three use-case scenarios for different communities to facilitate the use and application of DataVault. Potential features are proposed and we outline the future development for these features.
Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriat e storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed.
Optimizing the physical data storage and retrieval of data are two key database management problems. In this paper, we propose a language that can express a wide range of physical database layouts, going well beyond the row- and column-based methods that are widely used in database management systems. We use deductive synthesis to turn a high-level relational representation of a database query into a highly optimized low-level implementation which operates on a specialized layout of the dataset. We build a compiler for this language and conduct experiments using a popular database benchmark, which shows that the performance of these specialized queries is competitive with a state-of-the-art in memory compiled database system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا