ترغب بنشر مسار تعليمي؟ اضغط هنا

Local topological moves determine global diffusion properties of hyperbolic higher-order networks

115   0   0.0 ( 0 )
 نشر من قبل Ana Paula Mill\\'an Vidal
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From social interactions to the human brain, higher-order networks are key to describe the underlying network geometry and topology of many complex systems. While it is well known that network structure strongly affects its function, the role that network topology and geometry has on the emerging dynamical properties of higher-order networks is yet to be clarified. In this perspective, the spectral dimension plays a key role since it determines the effective dimension for diffusion processes on a network. Despite its relevance, a theoretical understanding of which mechanisms lead to a finite spectral dimension, and how this can be controlled, represents nowadays still a challenge and is the object of intense research. Here we introduce two non-equilibrium models of hyperbolic higher-order networks and we characterize their network topology and geometry by investigating the interwined appearance of small-world behavior, $delta$-hyperbolicity and community structure. We show that different topological moves determining the non-equilibrium growth of the higher-order hyperbolic network models induce tunable values of the spectral dimension, showing a rich phenomenology which is not displayed in random graph ensembles. In particular, we observe that, if the topological moves used to construct the higher-order network increase the area$/$volume ratio, the spectral dimension continuously decreases, while the opposite effect is observed if the topological moves decrease the area$/$volume ratio. Our work reveals a new link between the geometry of a network and its diffusion properties, contributing to a better understanding of the complex interplay between network structure and dynamics.



قيم البحث

اقرأ أيضاً

We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as non-interacting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure.
A concept of higher order neighborhood in complex networks, introduced previously (PRE textbf{73}, 046101, (2006)), is systematically explored to investigate larger scale structures in complex networks. The basic idea is to consider each higher order neighborhood as a network in itself, represented by a corresponding adjacency matrix. Usual network indices are then used to evaluate the properties of each neighborhood. Results for a large number of typical networks are presented and discussed. Further, the information from all neighborhoods is condensed in a single neighborhood matrix, which can be explored for visualizing the neighborhood structure. On the basis of such representation, a distance is introduced to compare, in a quantitative way, how far apart networks are in the space of neighborhood matrices. The distance depends both on the network topology and the adopted node numbering. Given a pair of networks, a Monte Carlo algorithm is developed to find the best numbering for one of them, holding fixed the numbering of the second network, obtaining a projection of the first one onto the pattern of the other. The minimal value found for the distance reflects differences in the neighborhood structures of the two networks that arise from distinct topologies. Examples are worked out allowing for a quantitative comparison for distances among a set of distinct networks.
104 - Yan-Bin Yang , Kai Li , L.-M. Duan 2020
We study disorder effects in a two-dimensional system with chiral symmetry and find that disorder can induce a quadrupole topological insulating phase (a higher-order topological phase with quadrupole moments) from a topologically trivial phase. Thei r topological properties manifest in a topological invariant defined based on effective boundary Hamiltonians, the quadrupole moment, and zero-energy corner modes. We find gapped and gapless topological phases and a Griffiths regime. In the gapless topological phase, all the states are localized, while in the Griffiths regime, the states at zero energy become multifractal. We further apply the self-consistent Born approximation to show that the induced topological phase arises from disorder renormalized masses. We finally introduce a practical experimental scheme with topoelectrical circuits where the predicted topological phenomena can be observed by impedance measurements. Our work opens the door to studying higher-order topological Anderson insulators and their localization properties.
127 - P. Cats , A. Quelle , O. Viyuela 2017
We find a series of topological phase transitions of increasing order, beyond the more standard second-order phase transition in a one-dimensional topological superconductor. The jumps in the order of the transitions depend on the range of the pairin g interaction, which is parametrized by an algebraic decay with exponent $alpha$. Remarkably, in the limit $alpha = 1$ the order of the topological transition becomes infinite. We compute the critical exponents for the series of higher-order transitions in exact form and find that they fulfill the hyperscaling relation. We also study the critical behaviour at the boundary of the system and discuss potential experimental platforms of magnetic atoms in superconductors.
A condensation transition was predicted for growing technological networks evolving by preferential attachment and competing quality of their nodes, as described by the fitness model. When this condensation occurs a node acquires a finite fraction of all the links of the network. Earlier studies based on steady state degree distribution and on the mapping to Bose-Einstein condensation, were able to identify the critical point. Here we characterize the dynamics of condensation and we present evidence that below the condensation temperature there is a slow down of the dynamics and that a single node (not necessarily the best node in the network) emerges as the winner for very long times. The characteristic time t* at which this phenomenon occurs diverges both at the critical point and at $T -> 0$ when new links are attached deterministically to the highest quality node of the network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا