ﻻ يوجد ملخص باللغة العربية
We introduce a gravitational waveform inversion strategy that discovers mechanical models of binary black hole (BBH) systems. We show that only a single time series of (possibly noisy) waveform data is necessary to construct the equations of motion for a BBH system. Starting with a class of universal differential equations parameterized by feed-forward neural networks, our strategy involves the construction of a space of plausible mechanical models and a physics-informed constrained optimization within that space to minimize the waveform error. We apply our method to various BBH systems including extreme and comparable mass ratio systems in eccentric and non-eccentric orbits. We show the resulting differential equations apply to time durations longer than the training interval, and relativistic effects, such as perihelion precession, radiation reaction, and orbital plunge, are automatically accounted for. The methods outlined here provide a new, data-driven approach to studying the dynamics of binary black hole systems.
Over the past year, a handful of new gravitational wave models have been developed to include multiple harmonic modes thereby enabling for the first time fully Bayesian inference studies including higher modes to be performed. Using one recently-deve
We present a systematic comparison of the binary black hole (BBH) signal waveform reconstructed by two independent and complementary approaches used in LIGO and Virgo source inference: a template-based analysis, and a morphology-independent analysis.
Accurate extractions of the detected gravitational wave (GW) signal waveforms are essential to validate a detection and to probe the astrophysics behind the sources producing the GWs. This however could be difficult in realistic scenarios where the s
Coalescing binary black holes emit anisotropic gravitational radiation. This causes a net emission of linear momentum that produces a gradual acceleration of the source. As a result, the final remnant black hole acquires a characteristic velocity kno
In this letter we suggest a scenario for simultaneous emission of gravitational-wave and $gamma$-ray bursts (GRBs) from soft gamma-ray repeaters (SGRs). we argue that both of the radiations can be generated by a super-Eddington accreting neutron star