ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum circuits for exact unitary $t$-designs and applications to higher-order randomized benchmarking

107   0   0.0 ( 0 )
 نشر من قبل Yoshifumi Nakata Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A unitary $t$-design is a powerful tool in quantum information science and fundamental physics. Despite its usefulness, only approximate implementations were known for general $t$. In this paper, we provide for the first time quantum circuits that generate exact unitary $t$-designs for any $t$ on an arbitrary number of qubits. Our construction is inductive and is of practical use in small systems. We then introduce a $t$-th order generalization of randomized benchmarking ($t$-RB) as an application of exact $2t$-designs. We particularly study the $2$-RB in detail and show that it reveals self-adjointness of quantum noise, a new metric related to the feasibility of quantum error correction (QEC). We numerically demonstrate that the $2$-RB in one- and two-qubit systems is feasible, and experimentally characterize background noise of a superconducting qubit by the $2$-RB. It is shown from the experiment that interactions with adjacent qubits induce the noise that may result in an obstacle toward the realization of QEC.



قيم البحث

اقرأ أيضاً

Any technology requires precise benchmarking of its components, and the quantum technologies are no exception. Randomized benchmarking allows for the relatively resource economical estimation of the average gate fidelity of quantum gates from the Cli fford group, assuming identical noise levels for all gates, making use of suitable sequences of randomly chosen Clifford gates. In this work, we report significant progress on randomized benchmarking, by showing that it can be done for individual quantum gates outside the Clifford group, even for varying noise levels per quantum gate. This is possible at little overhead of quantum resources, but at the expense of a significant classical computational cost. At the heart of our analysis is a representation-theoretic framework that we develop here which is brought into contact with classical estimation techniques based on bootstrapping and matrix pencils. We demonstrate the functioning of the scheme at hand of benchmarking tensor powers of T-gates. Apart from its practical relevance, we expect this insight to be relevant as it highlights the role of assumptions made on unknown noise processes when characterizing quantum gates at high precision.
A unitary 2-design can be viewed as a quantum analogue of a 2-universal hash function: it is indistinguishable from a truly random unitary by any procedure that queries it twice. We show that exact unitary 2-designs on n qubits can be implemented by quantum circuits consisting of ~O(n) elementary gates in logarithmic depth. This is essentially a quadratic improvement in size (and in width times depth) over all previous implementations that are exact or approximate (for sufficiently strong approximations).
A key requirement for scalable quantum computing is that elementary quantum gates can be implemented with sufficiently low error. One method for determining the error behavior of a gate implementation is to perform process tomography. However, standa rd process tomography is limited by errors in state preparation, measurement and one-qubit gates. It suffers from inefficient scaling with number of qubits and does not detect adverse error-compounding when gates are composed in long sequences. An additional problem is due to the fact that desirable error probabilities for scalable quantum computing are of the order of 0.0001 or lower. Experimentally proving such low errors is challenging. We describe a randomized benchmarking method that yields estimates of the computationally relevant errors without relying on accurate state preparation and measurement. Since it involves long sequences of randomly chosen gates, it also verifies that error behavior is stable when used in long computations. We implemented randomized benchmarking on trapped atomic ion qubits, establishing a one-qubit error probability per randomized pi/2 pulse of 0.00482(17) in a particular experiment. We expect this error probability to be readily improved with straightforward technical modifications.
We describe a simple randomized benchmarking protocol for quantum information processors and obtain a sequence of models for the observable fidelity decay as a function of a perturbative expansion of the errors. We are able to prove that the protocol provides an efficient and reliable estimate of an average error-rate for a set operations (gates) under a general noise model that allows for both time and gate-dependent errors. We determine the conditions under which this estimate remains valid and illustrate the protocol through numerical examples.
Variational quantum circuits are promising tools whose efficacy depends on their optimisation method. For noise-free unitary circuits, the quantum generalisation of natural gradient descent was recently introduced. The method can be shown to be equiv alent to imaginary time evolution, and is highly effective due to a metric tensor reconciling the classical parameter space to the devices Hilbert space. Here we generalise quantum natural gradient to consider arbitrary quantum states (both mixed and pure) via completely positive maps; thus our circuits can incorporate both imperfect unitary gates and fundamentally non-unitary operations such as measurements. Whereas the unitary variant relates to classical Fisher information, here we find that quantum Fisher information defines the core metric in the space of density operators. Numerical simulations indicate that our approach can outperform other variational techniques when circuit noise is present. We finally assess the practical feasibility of our implementation and argue that its scalability is only limited by the number and quality of imperfect gates and not by the number of qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا