ﻻ يوجد ملخص باللغة العربية
Despite the success of large-scale empirical risk minimization (ERM) at achieving high accuracy across a variety of machine learning tasks, fair ERM is hindered by the incompatibility of fairness constraints with stochastic optimization. In this paper, we propose the fair empirical risk minimization via exponential Renyi mutual information (FERMI) framework. FERMI is built on a stochastic estimator for exponential Renyi mutual information (ERMI), an information divergence measuring the degree of the dependence of predictions on sensitive attributes. Theoretically, we show that ERMI upper bounds existing popular fairness violation metrics, thus controlling ERMI provides guarantees on other commonly used violations, such as $L_infty$. We derive an unbiased estimator for ERMI, which we use to derive the FERMI algorithm. We prove that FERMI converges for demographic parity, equalized odds, and equal opportunity notions of fairness in stochastic optimization. Empirically, we show that FERMI is amenable to large-scale problems with multiple (non-binary) sensitive attributes and non-binary targets. Extensive experiments show that FERMI achieves the most favorable tradeoffs between fairness violation and test accuracy across all tested setups compared with state-of-the-art baselines for demographic parity, equalized odds, equal opportunity. These benefits are especially significant for non-binary classification with large sensitive sets and small batch sizes, showcasing the effectiveness of the FERMI objective and the developed stochastic algorithm for solving it.
Machine unlearning refers to mechanisms that can remove the influence of a subset of training data upon request from a trained model without incurring the cost of re-training from scratch. This paper develops a unified PAC-Bayesian framework for mach
Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of c
Large deep neural networks are powerful, but exhibit undesirable behaviors such as memorization and sensitivity to adversarial examples. In this work, we propose mixup, a simple learning principle to alleviate these issues. In essence, mixup trains a
Conditional Mutual Information (CMI) is a measure of conditional dependence between random variables X and Y, given another random variable Z. It can be used to quantify conditional dependence among variables in many data-driven inference problems su
We propose a method for learning Markov network structures for continuous data without invoking any assumptions about the distribution of the variables. The method makes use of previous work on a non-parametric estimator for mutual information which