ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast, Slow, Early, Late: Quenching Massive Galaxies at $zsim0.8$

68   0   0.0 ( 0 )
 نشر من قبل Sandro Tacchella
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the stellar populations for a sample of 161 massive, mainly quiescent galaxies at $langle z_{rm obs} rangle=0.8$ with deep Keck/DEIMOS rest-frame optical spectroscopy (HALO7D survey). With the fully Bayesian framework Prospector, we simultaneously fit the spectroscopic and photometric data with an advanced physical model (including non-parametric star-formation histories, emission lines, variable dust attenuation law, and dust and AGN emission) together with an uncertainty and outlier model. We show that both spectroscopy and photometry are needed to break the dust-age-metallicity degeneracy. We find a large diversity of star-formation histories: although the most massive ($M_{star}>2times10^{11}~M_{odot}$) galaxies formed the earliest (formation redshift of $z_{rm f}approx5-10$ with a short star-formation timescale of $tau_{rm SF}lesssim1~mathrm{Gyr}$), lower-mass galaxies have a wide range of formation redshifts, leading to only a weak trend of $z_{rm f}$ with $M_{star}$. Interestingly, several low-mass galaxies with have formation redshifts of $z_{rm f}approx5-8$. Star-forming galaxies evolve about the star-forming main sequence, crossing the ridgeline several times in their past. Quiescent galaxies show a wide range and continuous distribution of quenching timescales ($tau_{rm quench}approx0-5~mathrm{Gyr}$) with a median of $langletau_{rm quench}rangle=1.0_{-0.9}^{+0.8}~mathrm{Gyr}$ and of quenching epochs of $z_{rm quench}approx0.8-5.0$ ($langle z_{rm quench}rangle=1.3_{-0.4}^{+0.7}$). This large diversity of quenching timescales and epochs points toward a combination of internal and external quenching mechanisms. In our sample, rejuvenation and late bloomers are uncommon. In summary, our analysis supports the grow & quench framework and is consistent with a wide and continuously-populated diversity of quenching timescales.



قيم البحث

اقرأ أيضاً

83 - C. Maier 2018
(Abridged) We explore 7 clusters from LoCuSS at z~0.2 with spectra of 1965 cluster members from the ACReS Hectospec survey covering a region which corresponds to about three virial radii for each cluster. We measure fluxes of five emission lines of c luster members enabling us to unambiguously derive O/H gas metallicities, and also SFRs from extinction corrected Halpha fluxes. We compare our cluster galaxy sample with a field sample of 705 galaxies at similar redshifts observed with Hectospec. We find that star-forming cluster and field galaxies show similar median specific SFRs in a given mass bin, but their O/H values are displaced to higher values at projected radii of R<R200 compared with galaxies at larger radii and in the field. The comparison with metallicity-SFR-mass model predictions with inflowing gas indicates a slow-quenching scenario in which strangulation is initiated when galaxies pass R~R200 by stopping the inflow of gas. The metallicities of cluster members inside R200 are thereby increasing, but their SFRs are hardly affected for a period of time, because these galaxies consume available disk gas. We use the fraction of star-forming cluster galaxies as a function of clustercentric radius compared to predictions from the Millennium simulation to constrain quenching timescales to be 1-2Gyrs. This is consistent with a slow-then-rapid quenching scenario. Slow quenching (strangulation) starts when the gas inflow is stopped when the galaxy passes R200 with a phase in which cluster galaxies are still star-forming, but they show elevated metallicities tracing the ongoing quenching. This phase lasts for 1-2Gyrs, meanwhile the galaxies travel to denser inner regions of the cluster, and is followed by a rapid phase: a rapid complete quenching of star formation due to the increasing ram-pressure towards the cluster center which can also strip the cold gas in massive galaxies.
We present a comparison of the observed, spatially integrated stellar and ionized gas velocity dispersions of $sim1000$ massive ($log M_{star}/M_{odot}gtrsim,10.3$) galaxies in the Large Early Galaxy Astrophysics Census (LEGA-C) survey at $0.6lesssim ,zlesssim1.0$. The high $S/Nsim20{rmAA^{-1}}$ afforded by 20 hour VLT/VIMOS spectra allows for joint modeling of the stellar continuum and emission lines in all galaxies, spanning the full range of galaxy colors and morphologies. These observed integrated velocity dispersions (denoted as $sigma_{g, int}$ and $sigma_{star, int}$) are related to the intrinsic velocity dispersions of ionized gas or stars, but also include rotational motions through beam smearing and spectral extraction. We find good average agreement between observed velocity dispersions, with $langlelog(sigma_{g, int}/sigma_{star, int})rangle=-0.003$. This result does not depend strongly on stellar population, structural properties, or alignment with respect to the slit. However, in all regimes we find significant scatter between $sigma_{g, int}$ and $sigma_{star, int}$, with an overall scatter of 0.13 dex of which 0.05 dex is due to observational uncertainties. For an individual galaxy, the scatter between $sigma_{g, int}$ and $sigma_{star, int}$ translates to an additional uncertainty of $sim0.24rm{dex}$ on dynamical mass derived from $sigma_{g, int}$, on top of measurement errors and uncertainties from Virial constant or size estimates. We measure the $zsim0.8$ stellar mass Faber-Jackson relation and demonstrate that emission line widths can be used to measure scaling relations. However, these relations will exhibit increased scatter and slopes that are artificially steepened by selecting on subsets of galaxies with progressively brighter emission lines.
We present near-infrared spectroscopic confirmations of a sample of 16 photometrically-selected galaxies with stellar masses log(M_star/M_sun) > 11 at redshift z > 3 from the XMM-VIDEO and COSMOS-UltraVISTA fields using Keck/MOSFIRE as part of the MA GAZ3NE survey. Eight of the ultra-massive galaxies (UMGs) have specific star formation rates (sSFR) < 0.03 Gyr-1, with negligible emission lines. Another seven UMGs show emission lines consistent with active galactic nuclei and/or star formation, while only one UMG has sSFR > 1 Gyr-1. Model star formation histories of these galaxies describe systems that formed the majority of their stars in vigorous bursts of several hundred Myr duration around 4 < z < 6during which hundreds to thousands of solar masses were formed per year. These formation ages of < 1 Gyr prior to observation are consistent with ages derived from measurements of Dn(4000) and EW0(Hdelta). Rapid quenching followed these bursty star-forming periods, generally occurring less than 350 Myr before observation, resulting in post-starburst SEDs and spectra for half the sample. The rapid formation timescales are consistent with the extreme star formation rates observed in 4 < z < 7 dusty starbursts observed with ALMA, suggesting that such dusty galaxies are progenitors of these UMGs. While such formation histories have been suggested in previous studies, the large sample introduced here presents the most compelling evidence yet that vigorous star formation followed by rapid quenching is almost certainly the norm for high mass galaxies in the early universe. The UMGs presented here were selected to be brighter than Ks = 21.7 raising the intriguing possibility that even (fainter) older quiescent UMGs could exist at this epoch.
For early-type galaxies, the ability to sustain a corona of hot, X-ray emitting gas could have played a key role in quenching their star-formation history. Yet, it is still unclear what drives the precise amount of hot gas around these galaxies. By c ombining photometric and spectroscopic measurements for the early-type galaxies observed during the Atlas3D integral-field survey with measurements of their X-ray luminosity based on X-ray data of both low and high spatial resolution we conclude that the hot-gas content of early-type galaxies can depend on their dynamical structure. Specifically, whereas slow rotators generally have X-ray halos with luminosity L_X,gas and temperature T values that are in line with what is expected if the hot-gas emission is sustained by the thermalisaton of the kinetic energy carried by the stellar-mass loss material, fast rotators tend to display L_X,gas values that fall consistently below the prediction of this model, with similar T values that do not scale with the stellar kinetic energy as observed in the case of slow rotators. Considering that fast rotators are likely to be intrinsically flatter than slow rotators, and that the few L_X,gas-deficient slow rotators also happen to be relatively flat, the observed L_X,gas deficiency in these objects would support the hypothesis whereby flatter galaxies have a harder time in retaining their hot gas. We discuss the implications that a different hot-gas content could have on the fate of both acquired and internally-produced gaseous material, considering in particular how the L_X,gas deficiency of fast rotators would make them more capable to recycle the stellar-mass loss material into new stars than slow rotators. This is consistent with the finding that molecular gas and young stars are detected only in fast rotators in the Atlas3D sample, and that fast rotators tend to dustier than slow rotators. [Abridged]
We present a detailed study of the molecular gas content and stellar population properties of three massive galaxies at 1 < z < 1.3 that are in different stages of quenching. The galaxies were selected to have a quiescent optical/near-infrared spectr al energy distribution and a relatively bright emission at 24 micron, and show remarkably diverse properties. CO emission from each of the three galaxies is detected in deep NOEMA observations, allowing us to derive molecular gas fractions Mgas/Mstar of 13-23%. We also reconstruct the star formation histories by fitting models to the observed photometry and optical spectroscopy, finding evidence for recent rejuvenation in one object, slow quenching in another, and rapid quenching in the third system. To better constrain the quenching mechanism we explore the depletion times for our sample and other similar samples at z~0.7 from the literature. We find that the depletion times are highly dependent on the method adopted to measure the star formation rate: using the UV+IR luminosity we obtain depletion times about 6 times shorter than those derived using dust-corrected [OII] emission. When adopting the star formation rates from spectral fitting, which are arguably more robust, we find that recently quenched galaxies and star-forming galaxies have similar depletion times, while older quiescent systems have longer depletion times. These results offer new, important constraints for physical models of galaxy quenching.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا