ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon frequency shift in curvature based Extended Theories of Gravity

96   0   0.0 ( 0 )
 نشر من قبل Salvatore Capozziello
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the frequency shift of photons generated by rotating gravitational sources in the framework of curvature based Extended Theories of Gravity. The discussion is developed considering the weak-field approximation. Following a perturbative approach, we analyze the process of exchanging photons between Earth and a given satellite, and we find a general relation to constrain the free parameters of gravitational theories. Finally, we suggest the Moon as a possible laboratory to test theories of gravity by future experiments which can be, in principle, based also on other Solar System bodies.

قيم البحث

اقرأ أيضاً

Static and spherically symmetric wormhole solutions can be reconstructed in the framework of curvature based Extended Theories of Gravity. In particular, extensions of the General Relativity, in metric and curvature formalism give rise to modified gr avitational potentials, constituted by the classical Newtonian potential and Yukawa-like corrections, whose parameters can be, in turn, gauged by the observations. Such an approach allows to reconstruct the spacetime out of the wormhole throat considering the asymptotic flatness as a physical property for the related gravitational field. Such an argument can be applied for a large class of curvature theories characterising the wormholes through the parameters of the potentials. According to this procedure, possible wormhole solutions could be observationally constrained. On the other hand, stable and traversable wormholes could be a direct probe for this class of Extended Theories of Gravity.
In this work we study a modified version of vacuum $f(R)$ gravity with a kinetic term which consists of the first derivatives of the Ricci scalar. We develop the general formalism of this kinetic Ricci modified $f(R)$ gravity and we emphasize on cosm ological applications for a spatially flat cosmological background. By using the formalism of this theory, we investigate how it is possible to realize various cosmological scenarios. Also we demonstrate that this theoretical framework can be treated as a reconstruction method, in the context of which it is possible to realize various exotic cosmologies for ordinary Einstein-Hilbert action. Finally, we derive the scalar-tensor counterpart theory of this kinetic Ricci modified $f(R)$ gravity, and we show the mathematical equivalence of the two theories.
We propose a high precision satellite experiment to further test Einsteins General Relativity and constrain extended theories of gravity. We consider the frequency shift of a photon radially exchanged between two observers located on Earth and on a s atellite in circular orbit in the equatorial plane. In General Relativity there exists a peculiar satellite-distance at which the static contribution to the frequency shift vanishes since the effects induced by pure gravity and special relativity compensate, while it can be non-zero in modified gravities, like in models with screening mechanisms. As an experimental device placed on the satellite we choose a system of hydrogen atoms which can exhibit the $1$s spin-flip transition from the singlet (unaligned proton-electron spins) to the triplet (aligned proton-electron spins) state induced by the absorption of photons at $21.1$cm. The observation of an excited state would indicate that the frequency of the emitted and absorbed photon remains unchanged according to General Relativity. On the contrary, a non-zero frequency shift, as predicted in extended theories of gravity, would prevent the spin-flip transition and the hydrogen atoms from jumping into the excited state. Such a detection would signify a smoking-gun signature of new physics beyond special and general relativity.
Thanks to the Planck Collaboration, we know the value of the scalar spectral index of primordial fluctuations with unprecedented precision. In addition, the joint analysis of the data from Planck, BICEP2, and KEK has further constrained the value of the tensor-to-scalar ratio $r$ so that chaotic inflationary scenarios seem to be disfavoured. Inspired by these results, we look for a model that yields a value of $r$ that is larger than the one predicted by the Starobinsky model but is still within the new constraints. We show that purely quadratic, renormalizable, and scale-invariant gravity, implemented by loop-corrections, satisfies these requirements.
The cosmographic approach, which only relies upon the homogeneity and isotropy of the Universe on large scales, has become an essential tool in dealing with an increasing number of theoretical possibilities for explaining the late-time acceleration o f the Universe, ranging from Modified Gravity theories to Dark Energy alternatives passing from testing the cosmological concordance Lambda-CDM model. Despite its generality, we show that this method has a number of shortcomings when trying to adequately reconstruct theories with higher-order derivatives in either the gravitational or the matter sector. Herein some paradigmatic examples of such an inability, explanations of the limitations and prospective cures will be presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا