ﻻ يوجد ملخص باللغة العربية
The cosmographic approach, which only relies upon the homogeneity and isotropy of the Universe on large scales, has become an essential tool in dealing with an increasing number of theoretical possibilities for explaining the late-time acceleration of the Universe, ranging from Modified Gravity theories to Dark Energy alternatives passing from testing the cosmological concordance Lambda-CDM model. Despite its generality, we show that this method has a number of shortcomings when trying to adequately reconstruct theories with higher-order derivatives in either the gravitational or the matter sector. Herein some paradigmatic examples of such an inability, explanations of the limitations and prospective cures will be presented.
Cosmography is an ideal tool to investigate the cosmic expansion history of the Universe in a model-independent way. The equations of motion in modified theories of gravity are usually very complicated; cosmography may select practical models without
In the context of extended Teleparallel gravity theories with a 3+1 dimensions Gauss-Bonnet analog term, we address the possibility of these theories reproducing several well-known cosmological solutions. In particular when applied to a Friedmann-Lem
The intriguing choice to treat alternative theories of gravity by means of the Palatini approach, namely elevating the affine connection to the role of independent variable, contains the seed of some interesting (usually under-explored) generalizatio
The debate on gravity theories to extend or modify General Relativity is very active today because of the issues related to ultra-violet and infra-red behavior of Einsteins theory. In the first case, we have to address the Quantum Gravity problem. In
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry.