ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic image reconstruction with phase recovery and autofocusing using recurrent neural networks

209   0   0.0 ( 0 )
 نشر من قبل Aydogan Ozcan
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Digital holography is one of the most widely used label-free microscopy techniques in biomedical imaging. Recovery of the missing phase information of a hologram is an important step in holographic image reconstruction. Here we demonstrate a convolutional recurrent neural network (RNN) based phase recovery approach that uses multiple holograms, captured at different sample-to-sensor distances to rapidly reconstruct the phase and amplitude information of a sample, while also performing autofocusing through the same network. We demonstrated the success of this deep learning-enabled holography method by imaging microscopic features of human tissue samples and Papanicolaou (Pap) smears. These results constitute the first demonstration of the use of recurrent neural networks for holographic imaging and phase recovery, and compared with existing methods, the presented approach improves the reconstructed image quality, while also increasing the depth-of-field and inference speed.



قيم البحث

اقرأ أيضاً

State-of-the-art image denoisers exploit various types of deep neural networks via deterministic training. Alternatively, very recent works utilize deep reinforcement learning for restoring images with diverse or unknown corruptions. Though deep rein forcement learning can generate effective policy networks for operator selection or architecture search in image restoration, how it is connected to the classic deterministic training in solving inverse problems remains unclear. In this work, we propose a novel image denoising scheme via Residual Recovery using Reinforcement Learning, dubbed R3L. We show that R3L is equivalent to a deep recurrent neural network that is trained using a stochastic reward, in contrast to many popular denoisers using supervised learning with deterministic losses. To benchmark the effectiveness of reinforcement learning in R3L, we train a recurrent neural network with the same architecture for residual recovery using the deterministic loss, thus to analyze how the two different training strategies affect the denoising performance. With such a unified benchmarking system, we demonstrate that the proposed R3L has better generalizability and robustness in image denoising when the estimated noise level varies, comparing to its counterparts using deterministic training, as well as various state-of-the-art image denoising algorithms.
Computer vision tasks are often expected to be executed on compressed images. Classical image compression standards like JPEG 2000 are widely used. However, they do not account for the specific end-task at hand. Motivated by works on recurrent neural network (RNN)-based image compression and three-dimensional (3D) reconstruction, we propose unified network architectures to solve both tasks jointly. These joint models provide image compression tailored for the specific task of 3D reconstruction. Images compressed by our proposed models, yield 3D reconstruction performance superior as compared to using JPEG 2000 compression. Our models significantly extend the range of compression rates for which 3D reconstruction is possible. We also show that this can be done highly efficiently at almost no additional cost to obtain compression on top of the computation already required for performing the 3D reconstruction task.
We explore an ensembled $Sigma$-net for fast parallel MR imaging, including parallel coil networks, which perform implicit coil weighting, and sensitivity networks, involving explicit sensitivity maps. The networks in $Sigma$-net are trained in a sup ervised way, including content and GAN losses, and with various ways of data consistency, i.e., proximal mappings, gradient descent and variable splitting. A semi-supervised finetuning scheme allows us to adapt to the k-space data at test time, which, however, decreases the quantitative metrics, although generating the visually most textured and sharp images. For this challenge, we focused on robust and high SSIM scores, which we achieved by ensembling all models to a $Sigma$-net.
This paper proposes a particle volume reconstruction directly from an in-line hologram using a deep neural network. Digital holographic volume reconstruction conventionally uses multiple diffraction calculations to obtain sectional reconstructed imag es from an in-line hologram, followed by detection of the lateral and axial positions, and the sizes of particles by using focus metrics. However, the axial resolution is limited by the numerical aperture of the optical system, and the processes are time-consuming. The method proposed here can simultaneously detect the lateral and axial positions, and the particle sizes via a deep neural network (DNN). We numerically investigated the performance of the DNN in terms of the errors in the detected positions and sizes. The calculation time is faster than conventional diffracted-based approaches.
Convolutional Neural Networks (CNNs) have recently become a favored technique for image denoising due to its adaptive learning ability, especially with a deep configuration. However, their efficacy is inherently limited owing to their homogenous netw ork formation with the unique use of linear convolution. In this study, we propose a heterogeneous network model which allows greater flexibility for embedding additional non-linearity at the core of the data transformation. To this end, we propose the idea of an operational neuron or Operational Neural Networks (ONN), which enables a flexible non-linear and heterogeneous configuration employing both inter and intra-layer neuronal diversity. Furthermore, we propose a robust operator search strategy inspired by the Hebbian theory, called the Synaptic Plasticity Monitoring (SPM) which can make data-driven choices for non-linearities in any architecture. An extensive set of comparative evaluations of ONNs and CNNs over two severe image denoising problems yield conclusive evidence that ONNs enriched by non-linear operators can achieve a superior denoising performance against CNNs with both equivalent and well-known deep configurations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا