ترغب بنشر مسار تعليمي؟ اضغط هنا

PADA: A Prompt-based Autoregressive Approach for Adaptation to Unseen Domains

65   0   0.0 ( 0 )
 نشر من قبل Eyal Ben-David
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Natural Language Processing algorithms have made incredible progress, but they still struggle when applied to out-of-distribution examples. We address a challenging and underexplored version of this domain adaptation problem, where an algorithm is trained on several source domains, and then applied to examples from an unseen domain that is unknown at training time. Particularly, no examples, labeled or unlabeled, or any other knowledge about the target domain are available to the algorithm at training time. We present PADA: A Prompt-based Autoregressive Domain Adaptation algorithm, based on the T5 model. Given a test example, PADA first generates a unique prompt and then, conditioned on this prompt, labels the example with respect to the NLP task. The prompt is a sequence of unrestricted length, consisting of pre-defined Domain Related Features (DRFs) that characterize each of the source domains. Intuitively, the prompt is a unique signature that maps the test example to the semantic space spanned by the source domains. In experiments with 3 tasks (text classification and sequence tagging), for a total of 14 multi-source adaptation scenarios, PADA substantially outperforms strong baselines.



قيم البحث

اقرأ أيضاً

Recent progress towards designing models that can generalize to unseen domains (i.e domain generalization) or unseen classes (i.e zero-shot learning) has embarked interest towards building models that can tackle both domain-shift and semantic shift s imultaneously (i.e zero-shot domain generalization). For models to generalize to unseen classes in unseen domains, it is crucial to learn feature representation that preserves class-level (domain-invariant) as well as domain-specific information. Motivated from the success of generative zero-shot approaches, we propose a feature generative framework integrated with a COntext COnditional Adaptive (COCOA) Batch-Normalization to seamlessly integrate class-level semantic and domain-specific information. The generated visual features better capture the underlying data distribution enabling us to generalize to unseen classes and domains at test-time. We thoroughly evaluate and analyse our approach on established large-scale benchmark - DomainNet and demonstrate promising performance over baselines and state-of-art methods.
Machine learning systems generally assume that the training and testing distributions are the same. To this end, a key requirement is to develop models that can generalize to unseen distributions. Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increasing interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. Great progress has been made in the area of domain generalization for years. This paper presents the first review of recent advances in this area. First, we provide a formal definition of domain generalization and discuss several related fields. We then thoroughly review the theories related to domain generalization and carefully analyze the theory behind generalization. We categorize recent algorithms into three classes: data manipulation, representation learning, and learning strategy, and present several popular algorithms in detail for each category. Third, we introduce the commonly used datasets and applications. Finally, we summarize existing literature and present some potential research topics for the future.
Ironies can not only express stronger emotions but also show a sense of humor. With the development of social media, ironies are widely used in public. Although many prior research studies have been conducted in irony detection, few studies focus on irony generation. The main challenges for irony generation are the lack of large-scale irony dataset and difficulties in modeling the ironic pattern. In this work, we first systematically define irony generation based on style transfer task. To address the lack of data, we make use of twitter and build a large-scale dataset. We also design a combination of rewards for reinforcement learning to control the generation of ironic sentences. Experimental results demonstrate the effectiveness of our model in terms of irony accuracy, sentiment preservation, and content preservation.
This paper addresses the problem of incremental domain adaptation (IDA) in natural language processing (NLP). We assume each domain comes one after another, and that we could only access data in the current domain. The goal of IDA is to build a unifi ed model performing well on all the domains that we have encountered. We adopt the recurrent neural network (RNN) widely used in NLP, but augment it with a directly parameterized memory bank, which is retrieved by an attention mechanism at each step of RNN transition. The memory bank provides a natural way of IDA: when adapting our model to a new domain, we progressively add new slots to the memory bank, which increases the number of parameters, and thus the model capacity. We learn the new memory slots and fine-tune existing parameters by back-propagation. Experimental results show that our approach achieves significantly better performance than fine-tuning alone. Compared with expanding hidden states, our approach is more robust for old domains, shown by both empirical and theoretical results. Our model also outperforms previous work of IDA including elastic weight consolidation and progressive neural networks in the experiments.
Language modeling (LM) for automatic speech recognition (ASR) does not usually incorporate utterance level contextual information. For some domains like voice assistants, however, additional context, such as the time at which an utterance was spoken, provides a rich input signal. We introduce an attention mechanism for training neural speech recognition language models on both text and non-linguistic contextual data. When applied to a large de-identified dataset of utterances collected by a popular voice assistant platform, our method reduces perplexity by 7.0% relative over a standard LM that does not incorporate contextual information. When evaluated on utterances extracted from the long tail of the dataset, our method improves perplexity by 9.0% relative over a standard LM and by over 2.8% relative when compared to a state-of-the-art model for contextual LM.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا