ﻻ يوجد ملخص باللغة العربية
The amount of mass lost by stars during the red-giant branch (RGB) phase is one of the main parameters to understand and correctly model the late stages of stellar evolution. Nevertheless, a fully-comprehensive knowledge of the RGB mass loss is still missing. Galactic Globular Clusters (GCs) are ideal targets to derive empirical formulations of mass loss, but the presence of multiple populations with different chemical compositions has been a major challenge to constrain stellar masses and RGB mass losses. Recent work has disentangled the distinct stellar populations along the RGB and the horizontal branch (HB) of 46 GCs, thus providing the possibility to estimate the RGB mass loss of each stellar population. The mass losses inferred for the stellar populations with pristine chemical composition (called first-generation or 1G stars) tightly correlate with cluster metallicity. This finding allows us to derive an empirical RGB mass-loss law for 1G stars. In this paper we investigate seven GCs with no evidence of multiple populations and derive the RGB mass loss by means of high-precision {it Hubble-Space Telescope} photometry and accurate synthetic photometry. We find a cluster-to-cluster variation in the mass loss ranging from $sim$0.1 to $sim$0.3 $M_{odot}$. The RGB mass loss of simple-population GCs correlates with the metallicity of the host cluster. The discovery that simple-population GCs and 1G stars of multiple population GCs follow similar mass-loss vs. metallicity relations suggests that the resulting mass-loss law is a standard outcome of stellar evolution.
The location of Galactic Globular Clusters (GC) stars on the horizontal branch (HB) should mainly depend on GC metallicity, the first parameter, but it is actually the result of complex interactions between the red giant branch (RGB) mass loss, the c
We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high resolution (R > 20,000) spectra obtained wi
Spreads in light element abundances among stars (a.k.a. multiple populations) are observed in nearly all globular clusters. One way to map such chemical variations using high-precision photometry is to employ a suitable combination of stellar magnitu
High resolution spectra of 123 red giant stars in the globular cluster M13 and 64 red giant stars in M92 were obtained with Hectochelle at the MMT telescope. Emission and line asymmetries in Halpha, and Ca K are identified, characterizing motions in
Multiple stellar populations (MPs) are a distinct characteristic of Globular Clusters (GCs). Their general properties have been widely studied among main sequence, red giant branch (RGB) and horizontal branch (HB) stars, but a common framework is sti