ﻻ يوجد ملخص باللغة العربية
We present new results on the equation of state and transition line of hot and dense strongly interacting QCD matter, obtained from a bottom-up Einstein-Maxwell-Dilaton holographic model. We considerably expand the previous coverage in baryon densities in this model by implementing new numerical methods to map the holographic black hole solutions onto the QCD phase diagram. We are also able to obtain, for the first time, the first-order phase transition line in a wide region of the phase diagram. Comparisons with the most recent lattice results for the QCD thermodynamics are also presented.
We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy-Ion Collisions (uRHICs) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics asso
We argue that an expanding quark-gluon plasma has an anomalous viscosity, which arises from interactions with dynamically generated colour fields. The anomalous viscosity dominates over the collisional viscosity for large velocity gradients or weak c
Several transport models have been employed in recent years to analyze heavy-flavor meson spectra in high-energy heavy-ion collisions. Heavy-quark transport coefficients extracted from these models with their default parameters vary, however, by up t
Photons are a penetrating probe of the hot medium formed in heavy-ion collisions, but they are emitted from all collision stages. At photon energies below 2-3 GeV, the measured photon spectra are approximately exponential and can be characterized by
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the Pythia event generator tuned to fit the transverse momentum spectr