ﻻ يوجد ملخص باللغة العربية
We study the beam-normal single-spin asymmetry (BNSSA) in high-energy elastic electron scattering from several spin-0 nuclei. Existing theoretical approaches work in the plane-wave formalism and predict the BNSSA to scale as $sim A/Z$ with the atomic number $Z$ and nuclear mass number $A$. While this prediction holds for light and intermediate nuclei, a striking disagreement in both the sign and the magnitude of BNSSA was observed by the PREX collaboration for $^{208}$Pb, coined the PREX puzzle. To shed light on this disagreement, we go beyond the plane-wave approach which neglects Coulomb distortions known to be significant for heavy nuclei. We explicitly investigate the dependence of BNSSA on $A$ and $Z$ by i) including inelastic intermediate states contributions into the Coulomb problem in the form of an optical potential, ii) by accounting for the experimental information on the $A$-dependence of the Compton slope parameter, and iii) giving a thorough account of the uncertainties of the calculation. Despite of these improvements, the PREX puzzle remains unexplained. We discuss further strategies to resolve this riddle.
We report on a new measurement of the beam-normal single spin asymmetry $A_{mathrm{n}}$ in the elastic scattering of 570 MeV transversely polarized electrons off $^{28}$Si and $^{90}$Zr at $Q^{2}=0.04, mathrm{GeV}^2/c^2$. The studied kinematics allow
A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of t
We report measurements of the parity-conserving beam-normal single-spin elastic scattering asymmetries $B_n$ on $^{12}$C and $^{27}$Al, obtained with an electron beam polarized transverse to its momentum direction. These measurements add an additiona
We estimate the target-normal single-spin asymmetry at nearly forward angles in elastic electron-nucleon scattering. In the leading-order approximation, this asymmetry is proportional to the imaginary part of the two-photon exchange (TPE) amplitude,
We estimate the beam-normal single-spin asymmetry in elastic lepton-proton scattering without employing the ultrarelativistic approximation. Our calculation is relevant for analyses of muon scattering at energies of few hundred MeV and below -- when