ﻻ يوجد ملخص باللغة العربية
We estimate the beam-normal single-spin asymmetry in elastic lepton-proton scattering without employing the ultrarelativistic approximation. Our calculation is relevant for analyses of muon scattering at energies of few hundred MeV and below -- when effects of the muon mass become essential. At such energies, the transverse polarization of the muon beam is expected to contribute significantly to the systematic uncertainty of precision measurements of elastic muon-proton scattering. We evaluate such systematics using an example of the MUSE experiment at PSI. The muon asymmetry is estimated at about 0.1% in kinematics of MUSE and it is the largest for scattering into a backward hemisphere.
We estimate the target-normal single-spin asymmetry at nearly forward angles in elastic electron-nucleon scattering. In the leading-order approximation, this asymmetry is proportional to the imaginary part of the two-photon exchange (TPE) amplitude,
A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of t
The transverse beam spin induced asymmetry is calculated for the scattering of transversally polarized electrons on a proton target within a realistic model. Such asymmetry is due to the interference between the Born amplitude and the imaginary part
We study the beam-normal single-spin asymmetry (BNSSA) in high-energy elastic electron scattering from several spin-0 nuclei. Existing theoretical approaches work in the plane-wave formalism and predict the BNSSA to scale as $sim A/Z$ with the atomic
We report on a new measurement of the beam-normal single spin asymmetry $A_{mathrm{n}}$ in the elastic scattering of 570 MeV transversely polarized electrons off $^{28}$Si and $^{90}$Zr at $Q^{2}=0.04, mathrm{GeV}^2/c^2$. The studied kinematics allow