ﻻ يوجد ملخص باللغة العربية
Superoscillating functions and supershifts appear naturally in weak measurements in physics. Their evolution as initial conditions in the time dependent Schrodinger equation is an important and challenging problem in quantum mechanics and mathematical analysis. The concept that encodes the persistence of superoscillations during the evolution is the (more general) supershift property of the solution. In this paper we give a unified approach to determine the supershift property for the solution of the time dependent Schrodinger equation. The main advantage and novelty of our results is that they only require suitable estimates and regularity assumptions on the Greens function, but not its explicit form. With this efficient general technique we are able to treat various potentials.
In this paper we study the time dependent Schrodinger equation with all possible self-adjoint singular interactions located at the origin, which include the $delta$ and $delta$-potentials as well as boundary conditions of Dirichlet, Neumann, and Robi
We propose a unified method for the large space-time scaling limit of emph{linear} collisional kinetic equations in the whole space. The limit is of emph{fractional} diffusion type for heavy tail equilibria with slow enough decay, and of diffusive ty
In this survey, our aim is to emphasize the main known limitations to the use of Wigner measures for Schrodinger equations. After a short review of successful applications of Wigner measures to study the semi-classical limit of solutions to Schroding
In this paper, the different operator forms of classical Yang-Baxter equation are given in the tensor expression through a unified algebraic method. It is closely related to left-symmetric algebras which play an important role in many fields in mathe
The aim of this paper is to study, in dimensions 2 and 3, the pure-power non-linear Schrodinger equation with an external uniform magnetic field included. In particular, we derive a general criteria on the initial data and the power of the non-linear