ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective

55   0   0.0 ( 0 )
 نشر من قبل Wuyang Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural Architecture Search (NAS) has been explosively studied to automate the discovery of top-performer neural networks. Current works require heavy training of supernet or intensive architecture evaluations, thus suffering from heavy resource consumption and often incurring search bias due to truncated training or approximations. Can we select the best neural architectures without involving any training and eliminate a drastic portion of the search cost? We provide an affirmative answer, by proposing a novel framework called training-free neural architecture search (TE-NAS). TE-NAS ranks architectures by analyzing the spectrum of the neural tangent kernel (NTK) and the number of linear regions in the input space. Both are motivated by recent theory advances in deep networks and can be computed without any training and any label. We show that: (1) these two measurements imply the trainability and expressivity of a neural network; (2) they strongly correlate with the networks test accuracy. Further on, we design a pruning-based NAS mechanism to achieve a more flexible and superior trade-off between the trainability and expressivity during the search. In NAS-Bench-201 and DARTS search spaces, TE-NAS completes high-quality search but only costs 0.5 and 4 GPU hours with one 1080Ti on CIFAR-10 and ImageNet, respectively. We hope our work inspires more attempts in bridging the theoretical findings of deep networks and practical impacts in real NAS applications. Code is available at: https://github.com/VITA-Group/TENAS.



قيم البحث

اقرأ أيضاً

271 - Xuanyi Dong , Yi Yang 2019
Conventional neural architecture search (NAS) approaches are based on reinforcement learning or evolutionary strategy, which take more than 3000 GPU hours to find a good model on CIFAR-10. We propose an efficient NAS approach learning to search by gr adient descent. Our approach represents the search space as a directed acyclic graph (DAG). This DAG contains billions of sub-graphs, each of which indicates a kind of neural architecture. To avoid traversing all the possibilities of the sub-graphs, we develop a differentiable sampler over the DAG. This sampler is learnable and optimized by the validation loss after training the sampled architecture. In this way, our approach can be trained in an end-to-end fashion by gradient descent, named Gradient-based search using Differentiable Architecture Sampler (GDAS). In experiments, we can finish one searching procedure in four GPU hours on CIFAR-10, and the discovered model obtains a test error of 2.82% with only 2.5M parameters, which is on par with the state-of-the-art. Code is publicly available on GitHub: https://github.com/D-X-Y/NAS-Projects.
We propose a new method for learning the structure of convolutional neural networks (CNNs) that is more efficient than recent state-of-the-art methods based on reinforcement learning and evolutionary algorithms. Our approach uses a sequential model-b ased optimization (SMBO) strategy, in which we search for structures in order of increasing complexity, while simultaneously learning a surrogate model to guide the search through structure space. Direct comparison under the same search space shows that our method is up to 5 times more efficient than the RL method of Zoph et al. (2018) in terms of number of models evaluated, and 8 times faster in terms of total compute. The structures we discover in this way achieve state of the art classification accuracies on CIFAR-10 and ImageNet.
The Neural Architecture Search (NAS) problem is typically formulated as a graph search problem where the goal is to learn the optimal operations over edges in order to maximise a graph-level global objective. Due to the large architecture parameter s pace, efficiency is a key bottleneck preventing NAS from its practical use. In this paper, we address the issue by framing NAS as a multi-agent problem where agents control a subset of the network and coordinate to reach optimal architectures. We provide two distinct lightweight implementations, with reduced memory requirements (1/8th of state-of-the-art), and performances above those of much more computationally expensive methods. Theoretically, we demonstrate vanishing regrets of the form O(sqrt(T)), with T being the total number of rounds. Finally, aware that random search is an, often ignored, effective baseline we perform additional experiments on 3 alternative datasets and 2 network configurations, and achieve favourable results in comparison.
Designing accurate and efficient convolutional neural architectures for vast amount of hardware is challenging because hardware designs are complex and diverse. This paper addresses the hardware diversity challenge in Neural Architecture Search (NAS) . Unlike previous approaches that apply search algorithms on a small, human-designed search space without considering hardware diversity, we propose HURRICANE that explores the automatic hardware-aware search over a much larger search space and a two-stage search algorithm, to efficiently generate tailored models for different types of hardware. Extensive experiments on ImageNet demonstrate that our algorithm outperforms state-of-the-art hardware-aware NAS methods under the same latency constraint on three types of hardware. Moreover, the discovered architectures achieve much lower latency and higher accuracy than current state-of-the-art efficient models. Remarkably, HURRICANE achieves a 76.67% top-1 accuracy on ImageNet with a inference latency of only 16.5 ms for DSP, which is a 3.47% higher accuracy and a 6.35x inference speedup than FBNet-iPhoneX, respectively. For VPU, we achieve a 0.53% higher top-1 accuracy than Proxyless-mobile with a 1.49x speedup. Even for well-studied mobile CPU, we achieve a 1.63% higher top-1 accuracy than FBNet-iPhoneX with a comparable inference latency. HURRICANE also reduces the training time by 30.4% compared to SPOS.
Existing neural network architectures in computer vision -- whether designed by humans or by machines -- were typically found using both images and their associated labels. In this paper, we ask the question: can we find high-quality neural architect ures using only images, but no human-annotated labels? To answer this question, we first define a new setup called Unsupervised Neural Architecture Search (UnNAS). We then conduct two sets of experiments. In sample-based experiments, we train a large number (500) of diverse architectures with either supervised or unsupervised objectives, and find that the architecture rankings produced with and without labels are highly correlated. In search-based experiments, we run a well-established NAS algorithm (DARTS) using various unsupervised objectives, and report that the architectures searched without labels can be competitive to their counterparts searched with labels. Together, these results reveal the potentially surprising finding that labels are not necessary, and the image statistics alone may be sufficient to identify good neural architectures.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا