ترغب بنشر مسار تعليمي؟ اضغط هنا

Anytime Sampling for Autoregressive Models via Ordered Autoencoding

157   0   0.0 ( 0 )
 نشر من قبل Yilun Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Autoregressive models are widely used for tasks such as image and audio generation. The sampling process of these models, however, does not allow interruptions and cannot adapt to real-time computational resources. This challenge impedes the deployment of powerful autoregressive models, which involve a slow sampling process that is sequential in nature and typically scales linearly with respect to the data dimension. To address this difficulty, we propose a new family of autoregressive models that enables anytime sampling. Inspired by Principal Component Analysis, we learn a structured representation space where dimensions are ordered based on their importance with respect to reconstruction. Using an autoregressive model in this latent space, we trade off sample quality for computational efficiency by truncating the generation process before decoding into the original data space. Experimentally, we demonstrate in several image and audio generation tasks that sample quality degrades gracefully as we reduce the computational budget for sampling. The approach suffers almost no loss in sample quality (measured by FID) using only 60% to 80% of all latent dimensions for image data. Code is available at https://github.com/Newbeeer/Anytime-Auto-Regressive-Model .

قيم البحث

اقرأ أيضاً

This paper introduces an alternative approach to sampling from autoregressive models. Autoregressive models are typically sampled sequentially, according to the transition dynamics defined by the model. Instead, we propose a sampling procedure that i nitializes a sequence with white noise and follows a Markov chain defined by Langevin dynamics on the global log-likelihood of the sequence. This approach parallelizes the sampling process and generalizes to conditional sampling. Using an autoregressive model as a Bayesian prior, we can steer the output of a generative model using a conditional likelihood or constraints. We apply these techniques to autoregressive models in the visual and audio domains, with competitive results for audio source separation, super-resolution, and inpainting.
We propose a new method for novelty detection that can tolerate high corruption of the training points, whereas previous works assumed either no or very low corruption. Our method trains a robust variational autoencoder (VAE), which aims to generate a model for the uncorrupted training points. To gain robustness to high corruption, we incorporate the following four changes to the common VAE: 1. Extracting crucial features of the latent code by a carefully designed dimension reduction component for distributions; 2. Modeling the latent distribution as a mixture of Gaussian low-rank inliers and full-rank outliers, where the testing only uses the inlier model; 3. Applying the Wasserstein-1 metric for regularization, instead of the Kullback-Leibler (KL) divergence; and 4. Using a least absolute deviation error for reconstruction. We establish both robustness to outliers and suitability to low-rank modeling of the Wasserstein metric as opposed to the KL divergence. We illustrate state-of-the-art results on standard benchmarks for novelty detection.
High-dimensional generative models have many applications including image compression, multimedia generation, anomaly detection and data completion. State-of-the-art estimators for natural images are autoregressive, decomposing the joint distribution over pixels into a product of conditionals parameterized by a deep neural network, e.g. a convolutional neural network such as the PixelCNN. However, PixelCNNs only model a single decomposition of the joint, and only a single generation order is efficient. For tasks such as image completion, these models are unable to use much of the observed context. To generate data in arbitrary orders, we introduce LMConv: a simple modification to the standard 2D convolution that allows arbitrary masks to be applied to the weights at each location in the image. Using LMConv, we learn an ensemble of distribution estimators that share parameters but differ in generation order, achieving improved performance on whole-image density estimation (2.89 bpd on unconditional CIFAR10), as well as globally coherent image completions. Our code is available at https://ajayjain.github.io/lmconv.
Stochastic processes generated by non-stationary distributions are difficult to represent with conventional models such as Gaussian processes. This work presents Recurrent Autoregressive Flows as a method toward general stochastic process modeling wi th normalizing flows. The proposed method defines a conditional distribution for each variable in a sequential process by conditioning the parameters of a normalizing flow with recurrent neural connections. Complex conditional relationships are learned through the recurrent network parameters. In this work, we present an initial design for a recurrent flow cell and a method to train the model to match observed empirical distributions. We demonstrate the effectiveness of this class of models through a series of experiments in which models are trained on three complex stochastic processes. We highlight the shortcomings of our current formulation and suggest some potential solutions.
Topic models are one of the most popular methods for learning representations of text, but a major challenge is that any change to the topic model requires mathematically deriving a new inference algorithm. A promising approach to address this proble m is autoencoding variational Bayes (AEVB), but it has proven diffi- cult to apply to topic models in practice. We present what is to our knowledge the first effective AEVB based inference method for latent Dirichlet allocation (LDA), which we call Autoencoded Variational Inference For Topic Model (AVITM). This model tackles the problems caused for AEVB by the Dirichlet prior and by component collapsing. We find that AVITM matches traditional methods in accuracy with much better inference time. Indeed, because of the inference network, we find that it is unnecessary to pay the computational cost of running variational optimization on test data. Because AVITM is black box, it is readily applied to new topic models. As a dramatic illustration of this, we present a new topic model called ProdLDA, that replaces the mixture model in LDA with a product of experts. By changing only one line of code from LDA, we find that ProdLDA yields much more interpretable topics, even if LDA is trained via collapsed Gibbs sampling.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا