ﻻ يوجد ملخص باللغة العربية
Subcomponent millicharged dark matter that cools baryons via Coulomb interactions has been invoked to explain the EDGES anomaly. However, this model is in severe tension with constraints from cosmology and stellar emissions. In this work, we consider the consequences of these millicharged particles existing in composite blobs. The relevant degrees of freedom at high temperature are minuscule elementary charges, which fuse at low temperatures to make up blobs of larger charge. These blobs serve as the degrees of freedom relevant in cooling the baryons sufficiently to account for the EDGES anomaly. In such a model, cosmology and stellar constraints (which involve high-temperature processes) apply only to the feebly-interacting elementary charges and not to the blobs. This salvages a large range of parameter space for millicharged blobs that can explain the EDGES anomaly. It also opens up new parameter space for direct detection, albeit at low momentum transfers.
Measurements of the lifetime of neutrons trapped in a bottle have been consistently shorter than the lifetime measured in neutron beam experiments. With trapping potentials as low as 50 neV and neutron detectors located only at the top of the bottle,
The anomaly cancellation equations for the $U(1)$ gauge group can be written as a cubic equation in $n-1$ integer variables, where $n$ is the number of Weyl fermions carrying the $U(1)$ charge. We solve this Diophantine cubic equation by providing a
We review a non-standard Big-Bang nucleosynthesis (BBN) scenario within the minimal supersymmetric standard model, and propose an idea to solve both ${}^{7}$Li and ${}^{6}$Li problems. Each problem is a discrepancy between the predicted abundance in
Costa et al. [Phys. Rev. Lett. 123, 151601 (2019)] recently gave a general solution to the anomaly equations for $n$ charges in a $U(1)$ gauge theory. `Primitive solutions of chiral fermion charges were parameterised and it was shown how operations p
Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symme