ترغب بنشر مسار تعليمي؟ اضغط هنا

A Composite Solution to the Neutron Bottle Anomaly

75   0   0.0 ( 0 )
 نشر من قبل Harikrishnan Ramani
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements of the lifetime of neutrons trapped in a bottle have been consistently shorter than the lifetime measured in neutron beam experiments. With trapping potentials as low as 50 neV and neutron detectors located only at the top of the bottle, this discrepancy could be the result of the soft scattering of dark matter with neutrons. However, it is challenging to obtain the observed loss rate in conventional models of dark matter scattering. We show that this phenomenology is possible in composite models of dark matter where the soft scattering is from dark matter that has been captured and accumulated in the earth. This solution can be tested by placing more neutron detectors around the trap, providing better angular coverage. The phenomenology of soft scattering by trapped composite dark matter is generic and suggests new experimental directions that could be pursued to detect this large class of models.



قيم البحث

اقرأ أيضاً

Subcomponent millicharged dark matter that cools baryons via Coulomb interactions has been invoked to explain the EDGES anomaly. However, this model is in severe tension with constraints from cosmology and stellar emissions. In this work, we consider the consequences of these millicharged particles existing in composite blobs. The relevant degrees of freedom at high temperature are minuscule elementary charges, which fuse at low temperatures to make up blobs of larger charge. These blobs serve as the degrees of freedom relevant in cooling the baryons sufficiently to account for the EDGES anomaly. In such a model, cosmology and stellar constraints (which involve high-temperature processes) apply only to the feebly-interacting elementary charges and not to the blobs. This salvages a large range of parameter space for millicharged blobs that can explain the EDGES anomaly. It also opens up new parameter space for direct detection, albeit at low momentum transfers.
We have witnessed the beginning of an era where dark matter and neutrino detectors can probe similar new physics phenomena. Motivated by the low-energy electron recoil spectrum observed by the dark matter experiment, XENON1T, at Gran Sasso laboratory , we interpret the observed signal not in terms of a dark matter particle, but rather in the context of a new light $Z^prime$ gauge boson. We discuss how such a light $Z^prime$ rises in a Two Higgs Doublet Model augmented by an abelian gauge symmetry where neutrino masses and the flavor problem are addressed, in agreement with neutrino-electron scattering data.
58 - Z. Berezhiani , F. Nesti 2012
Present experiments do not exclude that the neutron transforms into some invisible degenerate twin, so called mirror neutron, with an appreciable probability. These transitions are actively studied by monitoring neutron losses in ultra-cold neutron t raps, where they can be revealed by their magnetic field dependence. In this work we reanalyze the experimental data acquired by the group of A.P. Serebrov at Institute Laue-Langevin, and find a dependence at more than 5sigma away from the null hypothesis. This anomaly can be interpreted as oscillation to mirror neutrons with a timescale of few seconds, in the presence of a mirror magnetic field B~0.1G at the Earth. If confirmed by future experiments, this will have a number of deepest consequences in particle physics and astrophysics.
The anomaly cancellation equations for the $U(1)$ gauge group can be written as a cubic equation in $n-1$ integer variables, where $n$ is the number of Weyl fermions carrying the $U(1)$ charge. We solve this Diophantine cubic equation by providing a parametrization of the charges in terms of $n-2$ integers, and prove that this is the most general solution.
Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between p article physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earths gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newtons gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the first three minutes and later on in stellar nucleosynthesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا