ﻻ يوجد ملخص باللغة العربية
General solutions to the quantum Rabi model involve subspaces with unbounded number of photons. However, for the multiqubit multimode case, we find special solutions with at most one photon for arbitrary number of qubits and photon modes. Unlike the Juddian solution, ours exists for arbitrary single qubit-photon coupling strength with constant eigenenergy. This corresponds to a horizontal line in the spectrum, while still being a qubit-photon entangled state. As a possible application, we propose an adiabatic scheme for the fast generation of arbitrary single-photon multimode W states with nonadiabatic error less than 1%. Finally, we propose a superconducting circuit design, showing the experimental feasibility of the multimode multiqubit Rabi model.
We describe in detail the application of four qubit cluster states, built on the simultaneous entanglement of two photons in the degrees of freedom of polarization and linear momentum, for the realization of a complete set of basic one-way quantum co
We employ a polaron picture to investigate the properties of the two-photon quantum Rabi model (QRM), which describes a two-level or spin-half system coupled with a single bosonic mode by a two-photon process. In the polaron picture, the coupling in
We present a mean-photon-number dependent variational method, which works well in whole coupling regime if the photon energy is dominant over the spin-flipping, to evaluate the properties of the Rabi model for both the ground state and the excited st
We discuss the equilibrium and out of equilibrium dynamics of cavity QED in presence of dissipation beyond the standard perturbative treatment of losses. Using the dynamical polaron emph{ansatz} and Matrix Product State simulations, we discuss the ca
Interactions are essential for the creation of correlated quantum many-body states. While two-body interactions underlie most natural phenomena, three- and four-body interactions are important for the physics of nuclei [1], exotic few-body states in