ﻻ يوجد ملخص باللغة العربية
We describe in detail the application of four qubit cluster states, built on the simultaneous entanglement of two photons in the degrees of freedom of polarization and linear momentum, for the realization of a complete set of basic one-way quantum computation operations. These consist of arbitrary single qubit rotations, either probabilistic or deterministic, and simple two qubit gates, such as a c-not gate for equatorial qubits and a universal c-phase (CZ) gate acting on arbitrary target qubits. Other basic computation operations, such as the Grovers search and the Deutschs algorithms, have been realized by using these states. In all the cases we obtained a high value of the operation fidelities. These results demonstrate that cluster states of two photons entangled in many degrees of freedom are good candidates for the realization of more complex quantum computation operations based on a larger number of qubits.
We report an experimental realization of one-way quantum computing on a two-photon four-qubit cluster state. This is accomplished by developing a two-photon cluster state source entangled both in polarization and spatial modes. With this special sour
General solutions to the quantum Rabi model involve subspaces with unbounded number of photons. However, for the multiqubit multimode case, we find special solutions with at most one photon for arbitrary number of qubits and photon modes. Unlike the
We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quan
We propose and demonstrate the scaling up of photonic graph state through path qubit fusion. Two path qubits from separate two-photon four-qubit states are fused to generate a two-dimensional seven-qubit graph state composed of polarization and path
We prove that quantum-hard one-way functions imply simulation-secure quantum oblivious transfer (QOT), which is known to suffice for secure computation of arbitrary quantum functionalities. Furthermore, our construction only makes black-box use of th