ترغب بنشر مسار تعليمي؟ اضغط هنا

Agent-Based Campus Novel Coronavirus Infection and Control Simulation

156   0   0.0 ( 0 )
 نشر من قبل Pei Lv
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Corona Virus Disease 2019 (COVID-19), due to its extremely high infectivity, has been spreading rapidly around the world and bringing huge influence to socioeconomic development as well as peoples daily life. Taking for example the virus transmission that may occur after college students return to school, we analyze the quantitative influence of the key factors on the virus spread, including crowd density and self-protection. One Campus Virus Infection and Control Simulation model (CVICS) of the novel coronavirus is proposed in this paper, fully considering the characteristics of repeated contact and strong mobility of crowd in the closed environment. Specifically, we build an agent-based infection model, introduce the mean field theory to calculate the probability of virus transmission, and micro-simulate the daily prevalence of infection among individuals. The experimental results show that the proposed model in this paper efficiently simulate how the virus spread in the dense crowd in frequent contact under closed environment. Furthermore, preventive and control measures such as self-protection, crowd decentralization and isolation during the epidemic can effectively delay the arrival of infection peak and reduce the prevalence, and finally lower the risk of COVID-19 transmission after the students return to school.



قيم البحث

اقرأ أيضاً

In this paper we present ACEMod, an agent-based modelling framework for studying influenza epidemics in Australia. The simulator is designed to analyse the spatiotemporal spread of contagion and influenza spatial synchrony across the nation. The indi vidual-based epidemiological model accounts for mobility (worker and student commuting) patterns and human interactions derived from the 2006 Australian census and other national data sources. The high-precision simulation comprises 19.8 million stochastically generated software agents and traces the dynamics of influenza viral infection and transmission at several scales. Using this approach, we are able to synthesise epidemics in Australia with varying outbreak locations and severity. For each scenario, we investigate the spatiotemporal profiles of these epidemics, both qualitatively and quantitatively, via incidence curves, prevalence choropleths, and epidemic synchrony. This analysis exemplifies the nature of influenza pandemics within Australia and facilitates future planning of effective intervention, mitigation and crisis management strategies.
356 - Cuihua Shen 2020
Can public social media data be harnessed to predict COVID-19 case counts? We analyzed approximately 15 million COVID-19 related posts on Weibo, a popular Twitter-like social media platform in China, from November 1, 2019 to March 31, 2020. We develo ped a machine learning classifier to identify sick posts, which are reports of ones own and other peoples symptoms and diagnosis related to COVID-19. We then modeled the predictive power of sick posts and other COVID-19 posts on daily case counts. We found that reports of symptoms and diagnosis of COVID-19 significantly predicted daily case counts, up to 14 days ahead of official statistics. But other COVID-19 posts did not have similar predictive power. For a subset of geotagged posts (3.10% of all retrieved posts), we found that the predictive pattern held true for both Hubei province and the rest of mainland China, regardless of unequal distribution of healthcare resources and outbreak timeline. Researchers and disease control agencies should pay close attention to the social media infosphere regarding COVID-19. On top of monitoring overall search and posting activities, it is crucial to sift through the contents and efficiently identify true signals from noise.
Coronavirus outbreak is one of the most challenging pandemics for the entire human population of the planet Earth. Techniques such as the isolation of infected persons and maintaining social distancing are the only preventive measures against the epi demic COVID-19. The actual estimation of the number of infected persons with limited data is an indeterminate problem faced by data scientists. There are a large number of techniques in the existing literature, including reproduction number, the case fatality rate, etc., for predicting the duration of an epidemic and infectious population. This paper presents a case study of different techniques for analysing, modeling, and representation of data associated with an epidemic such as COVID-19. We further propose an algorithm for estimating infection transmission states in a particular area. This work also presents an algorithm for estimating end-time of an epidemic from Susceptible Infectious and Recovered model. Finally, this paper presents empirical and data analysis to study the impact of transmission probability, rate of contact, infectious, and susceptible on the epidemic spread.
This paper deals with the statistical signal pro- cessing over graphs for tracking infection diffusion in social networks. Infection (or Information) diffusion is modeled using the Susceptible-Infected-Susceptible (SIS) model. Mean field approximatio n is employed to approximate the discrete valued infected degree distribution evolution by a deterministic ordinary differential equation for obtaining a generative model for the infection diffusion. The infected degree distribution is shown to follow polynomial dynamics and is estimated using an exact non- linear Bayesian filter. We compute posterior Cramer-Rao bounds to obtain the fundamental limits of the filter which depend on the structure of the network. Considering the time-varying nature of the real world networks, the relationship between the diffusion thresholds and the degree distribution is investigated using generative models for real world networks. In addition, we validate the efficacy of our method with the diffusion data from a real-world online social system, Twitter. We find that SIS model is a good fit for the information diffusion and the non-linear filter effectively tracks the information diffusion.
Understanding the epidemic dynamics, and finding out efficient techniques to control it, is a challenging issue. A lot of research has been done on targeted immunization strategies, exploiting various global network topological properties. However, i n practice, information about the global structure of the contact network may not be available. Therefore, immunization strategies that can deal with a limited knowledge of the network structure are required. In this paper, we propose targeted immunization strategies that require information only at the community level. Results of our investigations on the SIR epidemiological model, using a realistic synthetic benchmark with controlled community structure, show that the community structure plays an important role in the epidemic dynamics. An extensive comparative evaluation demonstrates that the proposed strategies are as efficient as the most influential global centrality based immunization strategies, despite the fact that they use a limited amount of information. Furthermore, they outperform alternative local strategies, which are agnostic about the network structure, and make decisions based on random walks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا