ﻻ يوجد ملخص باللغة العربية
The inflow of cosmological gas onto haloes, while challenging to directly observe and quantify, plays a fundamental role in the baryon cycle of galaxies. Using the EAGLE suite of hydrodynamical simulations, we present a thorough exploration of the physical properties of gas accreting onto haloes -- namely, its spatial characteristics, density, temperature, and metallicity. Classifying accretion as ``hot or `` cold based on a temperature cut of $10^{5.5}{rm K}$, we find that the covering fraction ($f_{rm cov}$) of cold-mode accreting gas is significantly lower than the hot-mode, with $z=0$ $f_{rm cov}$ values of $approx 50%$ and $approx 80%$ respectively. Active Galactic Nuclei (AGN) feedback in EAGLE reduces inflow $f_{rm cov}$ values by $approx 10%$, with outflows decreasing the solid angle available for accretion flows. Classifying inflow by particle history, we find that gas on first-infall onto a halo is metal-depleted by $approx 2$~dex compared to pre-processed gas, which we find to mimic the circum-galactic medium (CGM) in terms of metal content. We also show that high (low) halo-scale gas accretion rates are associated with metal-poor (rich) CGM in haloes below $10^{12}M_{odot}$, and that variation in halo-scale gas accretion rates may offer a physical explanation for the enhanced scatter in the star-forming main sequence at low ($lesssim10^{9}M_{odot}$) and high ($gtrsim10^{10}M_{odot}$) stellar masses. Our results highlight how gas inflow influences several halo- and galaxy-scale properties, and the need to combine kinematic and chemical data in order to confidently break the degeneracy between accreting and outgoing gas in CGM observations.
We use the EAGLE cosmological, hydrodynamical simulations to predict the column density and equivalent width distributions of intergalactic O VII ($E=574$ eV) and O VIII ($E=654$ eV) absorbers at low redshift. These two ions are predicted to account
Determining the spatial distribution and intrinsic physical properties of neutral hydrogen on cosmological scales is one of the key goals of next-generation radio surveys. We use the EAGLE galaxy formation simulations to assess the properties of damp
We use the eagle simulations to study the connection between the quenching timescale, $tau_{rm Q}$, and the physical mechanisms that transform star-forming galaxies into passive galaxies. By quantifying $tau_{rm Q}$ in two complementary ways - as the
We study the $zapprox3.5$ intergalactic medium (IGM) by comparing new, high-quality absorption spectra of eight QSOs with $langle z_{rm QSO} rangle=3.75$, to virtual observations of the EAGLE cosmological hydrodynamical simulations. We employ the pix
We investigate the abundance of galactic molecular hydrogen (H$_2$) in the Evolution and Assembly of GaLaxies and their Environments (EAGLE) cosmological hydrodynamic simulations. We assign H$_2$ masses to gas particles in the simulations in post-pro