ﻻ يوجد ملخص باللغة العربية
We study the $zapprox3.5$ intergalactic medium (IGM) by comparing new, high-quality absorption spectra of eight QSOs with $langle z_{rm QSO} rangle=3.75$, to virtual observations of the EAGLE cosmological hydrodynamical simulations. We employ the pixel optical depth method and uncover strong correlations between various combinations of HI, CIII, CIV, SiIII, SiIV, and OVI. We find good agreement between many of the simulated and observed correlations, including OVI(HI). However, the observed median optical depths for the CIV(HI) and SiIV(HI) relations are higher than those measured from the mock spectra. The discrepancy increases from up to $approx0.1$ dex at $tau_{rm HI}=1$ to $approx1$ dex at $tau_{rm HI}=10^2$, where we are likely probing dense regions at small galactocentric distances. As possible solutions, we invoke (a) models of ionizing radiation softened above 4 Ryd to account for delayed completion of HeII reionization; (b) simulations run at a higher resolution; (c) the inclusion of additional line broadening due to unresolved turbulence; and (d) increased elemental abundancess; however, none of these factors can fully explain the observed differences. Enhanced photoionization of HI by local sources, which was not modelled, could offer a solution. However, the much better agreement with the observed OVI(HI) relation, which we find probes a hot and likely collisionally-ionized gas phase, indicates that the simulations are not in tension with the hot phase of the IGM, and suggests that the simulated outflows may entrain insufficient cool gas.
We investigate the association between galaxies and metal-enriched and metal-deficient absorbers in the local universe ($z < 0.16$) using a large compilation of FUV spectra of bright AGN targets observed with the Cosmic Origins Spectrograph aboard th
The circumgalactic medium (CGM) of galaxies serves as a record of the influences of outflows and accretion that drive the evolution of galaxies. Feedback from star formation drives outflows that carry mass and metals away from galaxies to the CGM, wh
It has been known for decades that the observed number of baryons in the local universe falls about 30-40% short of the total number of baryons predicted by Big-Bang Nucleosynthesis, as inferred from density fluctuations of the Cosmic Microwave Backg
We investigate the evolution of the galaxy Star Formation Rate Function (SFRF) and Cosmic Star Formation Rate Density (CSFRD) of $zsim 0-8 $ galaxies in the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations. In addition, w
We use the eagle simulations to study the connection between the quenching timescale, $tau_{rm Q}$, and the physical mechanisms that transform star-forming galaxies into passive galaxies. By quantifying $tau_{rm Q}$ in two complementary ways - as the