ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-View Feature Representation for Dialogue Generation with Bidirectional Distillation

133   0   0.0 ( 0 )
 نشر من قبل Shaoxiong Feng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural dialogue models suffer from low-quality responses when interacted in practice, demonstrating difficulty in generalization beyond training data. Recently, knowledge distillation has been used to successfully regularize the student by transferring knowledge from the teacher. However, the teacher and the student are trained on the same dataset and tend to learn similar feature representations, whereas the most general knowledge should be found through differences. The finding of general knowledge is further hindered by the unidirectional distillation, as the student should obey the teacher and may discard some knowledge that is truly general but refuted by the teacher. To this end, we propose a novel training framework, where the learning of general knowledge is more in line with the idea of reaching consensus, i.e., finding common knowledge that is beneficial to different yet all datasets through diversified learning partners. Concretely, the training task is divided into a group of subtasks with the same number of students. Each student assigned to one subtask not only is optimized on the allocated subtask but also imitates multi-view feature representation aggregated from other students (i.e., student peers), which induces students to capture common knowledge among different subtasks and alleviates the over-fitting of students on the allocated subtasks. To further enhance generalization, we extend the unidirectional distillation to the bidirectional distillation that encourages the student and its student peers to co-evolve by exchanging complementary knowledge with each other. Empirical results and analysis demonstrate that our training framework effectively improves the model generalization without sacrificing training efficiency.



قيم البحث

اقرأ أيضاً

Multi-role dialogue understanding comprises a wide range of diverse tasks such as question answering, act classification, dialogue summarization etc. While dialogue corpora are abundantly available, labeled data, for specific learning tasks, can be h ighly scarce and expensive. In this work, we investigate dialogue context representation learning with various types unsupervised pretraining tasks where the training objectives are given naturally according to the nature of the utterance and the structure of the multi-role conversation. Meanwhile, in order to locate essential information for dialogue summarization/extraction, the pretraining process enables external knowledge integration. The proposed fine-tuned pretraining mechanism is comprehensively evaluated via three different dialogue datasets along with a number of downstream dialogue-mining tasks. Result shows that the proposed pretraining mechanism significantly contributes to all the downstream tasks without discrimination to different encoders.
In sequence to sequence generation tasks (e.g. machine translation and abstractive summarization), inference is generally performed in a left-to-right manner to produce the result token by token. The neural approaches, such as LSTM and self-attention networks, are now able to make full use of all the predicted history hypotheses from left side during inference, but cannot meanwhile access any future (right side) information and usually generate unbalanced outputs in which left parts are much more accurate than right ones. In this work, we propose a synchronous bidirectional inference model to generate outputs using both left-to-right and right-to-left decoding simultaneously and interactively. First, we introduce a novel beam search algorithm that facilitates synchronous bidirectional decoding. Then, we present the core approach which enables left-to-right and right-to-left decoding to interact with each other, so as to utilize both the history and future predictions simultaneously during inference. We apply the proposed model to both LSTM and self-attention networks. In addition, we propose two strategies for parameter optimization. The extensive experiments on machine translation and abstractive summarization demonstrate that our synchronous bidirectional inference model can achieve remarkable improvements over the strong baselines.
Topic drift is a common phenomenon in multi-turn dialogue. Therefore, an ideal dialogue generation models should be able to capture the topic information of each context, detect the relevant context, and produce appropriate responses accordingly. How ever, existing models usually use word or sentence level similarities to detect the relevant contexts, which fail to well capture the topical level relevance. In this paper, we propose a new model, named STAR-BTM, to tackle this problem. Firstly, the Biterm Topic Model is pre-trained on the whole training dataset. Then, the topic level attention weights are computed based on the topic representation of each context. Finally, the attention weights and the topic distribution are utilized in the decoding process to generate the corresponding responses. Experimental results on both Chinese customer services data and English Ubuntu dialogue data show that STAR-BTM significantly outperforms several state-of-the-art methods, in terms of both metric-based and human evaluations.
325 - Tianxing He , James Glass 2019
Although deep learning models have brought tremendous advancements to the field of open-domain dialogue response generation, recent research results have revealed that the trained models have undesirable generation behaviors, such as malicious respon ses and generic (boring) responses. In this work, we propose a framework named Negative Training to minimize such behaviors. Given a trained model, the framework will first find generated samples that exhibit the undesirable behavior, and then use them to feed negative training signals for fine-tuning the model. Our experiments show that negative training can significantly reduce the hit rate of malicious responses, or discourage frequent responses and improve response diversity.
Textual representation learners trained on large amounts of data have achieved notable success on downstream tasks; intriguingly, they have also performed well on challenging tests of syntactic competence. Given this success, it remains an open quest ion whether scalable learners like BERT can become fully proficient in the syntax of natural language by virtue of data scale alone, or whether they still benefit from more explicit syntactic biases. To answer this question, we introduce a knowledge distillation strategy for injecting syntactic biases into BERT pretraining, by distilling the syntactically informative predictions of a hierarchical---albeit harder to scale---syntactic language model. Since BERT models masked words in bidirectional context, we propose to distill the approximate marginal distribution over words in context from the syntactic LM. Our approach reduces relative error by 2-21% on a diverse set of structured prediction tasks, although we obtain mixed results on the GLUE benchmark. Our findings demonstrate the benefits of syntactic biases, even in representation learners that exploit large amounts of data, and contribute to a better understanding of where syntactic biases are most helpful in benchmarks of natural language understanding.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا