ترغب بنشر مسار تعليمي؟ اضغط هنا

Privacy-Preserving Wireless Federated Learning Exploiting Inherent Hardware Impairments

333   0   0.0 ( 0 )
 نشر من قبل Sina Rezaei Aghdam
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a wireless federated learning system where multiple data holder edge devices collaborate to train a global model via sharing their parameter updates with an honest-but-curious parameter server. We demonstrate that the inherent hardware-induced distortion perturbing the model updates of the edge devices can be exploited as a privacy-preserving mechanism. In particular, we model the distortion as power-dependent additive Gaussian noise and present a power allocation strategy that provides privacy guarantees within the framework of differential privacy. We conduct numerical experiments to evaluate the performance of the proposed power allocation scheme under different levels of hardware impairments.



قيم البحث

اقرأ أيضاً

105 - Gui Zhou , Cunhua Pan , Hong Ren 2020
In practice, residual transceiver hardware impairments inevitably lead to distortion noise which causes the performance loss. In this paper, we study the robust transmission design for a reconfigurable intelligent surface (RIS)-aided secure communica tion system in the presence of transceiver hardware impairments. We aim for maximizing the secrecy rate while ensuring the transmit power constraint on the active beamforming at the base station and the unit-modulus constraint on the passive beamforming at the RIS. To address this problem, we adopt the alternate optimization method to iteratively optimize one set of variables while keeping the other set fixed. Specifically, the successive convex approximation (SCA) method is used to solve the active beamforming optimization subproblem, while the passive beamforming is obtained by using the semidefinite program (SDP) method. Numerical results illustrate that the proposed transmission design scheme is more robust to the hardware impairments than the conventional non-robust scheme that ignores the impact of the hardware impairments.
Motivated by the increasing computational capacity of wireless user equipments (UEs), e.g., smart phones, tablets, or vehicles, as well as the increasing concerns about sharing private data, a new machine learning model has emerged, namely federated learning (FL), that allows a decoupling of data acquisition and computation at the central unit. Unlike centralized learning taking place in a data center, FL usually operates in a wireless edge network where the communication medium is resource-constrained and unreliable. Due to limited bandwidth, only a portion of UEs can be scheduled for updates at each iteration. Due to the shared nature of the wireless medium, transmissions are subjected to interference and are not guaranteed. The performance of FL system in such a setting is not well understood. In this paper, an analytical model is developed to characterize the performance of FL in wireless networks. Particularly, tractable expressions are derived for the convergence rate of FL in a wireless setting, accounting for effects from both scheduling schemes and inter-cell interference. Using the developed analysis, the effectiveness of three different scheduling policies, i.e., random scheduling (RS), round robin (RR), and proportional fair (PF), are compared in terms of FL convergence rate. It is shown that running FL with PF outperforms RS and RR if the network is operating under a high signal-to-interference-plus-noise ratio (SINR) threshold, while RR is more preferable when the SINR threshold is low. Moreover, the FL convergence rate decreases rapidly as the SINR threshold increases, thus confirming the importance of compression and quantization of the update parameters. The analysis also reveals a trade-off between the number of scheduled UEs and subchannel bandwidth under a fixed amount of available spectrum.
Federated learning (FL) as a promising edge-learning framework can effectively address the latency and privacy issues by featuring distributed learning at the devices and model aggregation in the central server. In order to enable efficient wireless data aggregation, over-the-air computation (AirComp) has recently been proposed and attracted immediate attention. However, fading of wireless channels can produce aggregate distortions in an AirComp-based FL scheme. To combat this effect, the concept of dynamic learning rate (DLR) is proposed in this work. We begin our discussion by considering multiple-input-single-output (MISO) scenario, since the underlying optimization problem is convex and has closed-form solution. We then extend our studies to more general multiple-input-multiple-output (MIMO) case and an iterative method is derived. Extensive simulation results demonstrate the effectiveness of the proposed scheme in reducing the aggregate distortion and guaranteeing the testing accuracy using the MNIST and CIFAR10 datasets. In addition, we present the asymptotic analysis and give a near-optimal receive beamforming design solution in closed form, which is verified by numerical simulations.
165 - Hong Shen , Wei Xu , Shulei Gong 2020
In this paper, we focus on intelligent reflecting surface (IRS) assisted multi-antenna communications with transceiver hardware impairments encountered in practice. In particular, we aim to maximize the received signal-to-noise ratio (SNR) taking int o account the impact of hardware impairments, where the source transmit beamforming and the IRS reflect beamforming are jointly designed under the proposed optimization framework. To circumvent the non-convexity of the formulated design problem, we first derive a closed-form optimal solution to the source transmit beamforming. Then, for the optimization of IRS reflect beamforming, we obtain an upper bound to the optimal objective value via solving a single convex problem. A low-complexity minorization-maximization (MM) algorithm was developed to approach the upper bound. Simulation results demonstrate that the proposed beamforming design is more robust to the hardware impairments than that of the conventional SNR maximized scheme. Moreover, compared to the scenario without deploying an IRS, the performance gain brought by incorporating the hardware impairments is more evident for the IRS-aided communications.
We consider a cell-free hybrid massive multiple-input multiple-output (MIMO) system with $K$ users and $M$ access points (APs), each with $N_a$ antennas and $N_r< N_a$ radio frequency (RF) chains. When $Kll M{N_a}$, efficient uplink channel estimatio n and data detection with reduced number of pilots can be performed based on low-rank matrix completion. However, such a scheme requires the central processing unit (CPU) to collect received signals from all APs, which may enable the CPU to infer the private information of user locations. We therefore develop and analyze privacy-preserving channel estimation schemes under the framework of differential privacy (DP). As the key ingredient of the channel estimator, two joint differentially private noisy matrix completion algorithms based respectively on Frank-Wolfe iteration and singular value decomposition are presented. We provide an analysis on the tradeoff between the privacy and the channel estimation error. In particular, we show that the estimation error can be mitigated while maintaining the same privacy level by increasing the payload size with fixed pilot size; and the scaling laws of both the privacy-induced and privacy-independent error components in terms of payload size are characterized. Simulation results are provided to further demonstrate the tradeoff between privacy and channel estimation performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا