ﻻ يوجد ملخص باللغة العربية
The Adomian Decomposition Method (ADM) is a very effective approach for solving broad classes of nonlinear partial and ordinary differential equations, with important applications in different fields of applied mathematics, engineering, physics and biology. It is the goal of the present paper to provide a clear and pedagogical introduction to the Adomian Decomposition Method and to some of its applications. In particular, we focus our attention to a number of standard first-order ordinary differential equations (the linear, Bernoulli, Riccati, and Abel) with arbitrary coefficients, and present in detail the Adomian method for obtaining their solutions. In each case we compare the Adomian solution with the exact solution of some particular differential equations, and we show their complete equivalence. The second order and the fifth order ordinary differential equations are also considered. An important extension of the standard ADM, the Laplace-Adomian Decomposition Method is also introduced through the investigation of the solutions of a specific second order nonlinear differential equation. We also present the applications of the method to the Fisher-Kolmogorov second order partial nonlinear differential equation, which plays an important role in the description of many physical processes, as well as three important applications in astronomy and astrophysics, related to the determination of the solutions of the Kepler equation, of the Lane-Emden equation, and of the general relativistic equation describing the motion of massive particles in the spherically symmetric and static Schwarzschild geometry.
The biharmonic equation, as well as its nonlinear and inhomogeneous generalizations, plays an important role in engineering and physics. In particular the focusing biharmonic nonlinear Schr{o}dinger equation, and its standing wave solutions, have bee
A fractional Adomian decomposition method for fractional nonlinear differential equations is proposed. The iteration procedure is based on Jumaries fractional derivative. An example is given to elucidate the solution procedure, and the results are co
Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for
A concise introduction to quantum entanglement in multipartite systems is presented. We review entanglement of pure quantum states of three--partite systems analyzing the classes of GHZ and W states and discussing the monogamy relations. Special atte
We introduce and motivate generative modeling as a central task for machine learning and provide a critical view of the algorithms which have been proposed for solving this task. We overview how generative modeling can be defined mathematically as tr