ترغب بنشر مسار تعليمي؟ اضغط هنا

Laboratory Astrophysics and the State of Astronomy and Astrophysics

147   0   0.0 ( 0 )
 نشر من قبل Daniel Wolf Savin
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA, NSF, and DOE. These efforts are necessary for the success of astronomical research being funded by the agencies. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments in experimental technologies have allowed laboratory studies to take on a new role as some questions which previously could only be studied theoretically can now be addressed directly in the lab. With this in mind we, the members of the AAS Working Group on Laboratory Astrophysics, have prepared this State of the Profession Position Paper on the laboratory astrophysics infrastructure needed to ensure the advancement of astronomy and astrophysics in the next decade.



قيم البحث

اقرأ أيضاً

Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The mission enabling impact of laboratory astrophysics ranges from the scientific con ception stage for airborne and space-based observatories, all the way through to the scientific return of these missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA. These efforts are necessary for the success of astronomical research being funded by NASA. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments in experimental technologies have allowed laboratory studies to take on a new role as some questions which previously could only be studied theoretically can now be addressed directly in the lab. With this in mind we, the members of the AAS Working Group on Laboratory Astrophysics (WGLA), have prepared this White Paper on the laboratory astrophysics infrastructure needed to maximize the scientific return from NASAs space and Earth sciences program.
CubeSats have the potential to expand astrophysical discovery space, complementing ground-based electromagnetic and gravitational-wave observatories. The CubeSat design specifications help streamline delivery of instrument payloads to space. CubeSat planners have more options for tailoring orbits to fit observational needs and may have more flexibility in rapidly rescheduling observations to respond to transients. With over 1000 CubeSats launched, there has been a corresponding increase in the availability and performance of commercial-off-the-shelf (COTS) components compatible with the CubeSat standards, from solar panels and power systems to reaction wheels for three axis stabilization and precision attitude control. Commercially available components can reduce cost CubeSat missions, allowing more resources to be directed toward scientific instrument payload development and technology demonstrations.
The outer solar system provides a unique, quiet vantage point from which to observe the universe around us, where measurements could enable several niche astrophysical science cases that are too difficult to perform near Earth. NASAs New Horizons mis sion comprises an instrument package that provides imaging capability from ultraviolet (UV) to near-infrared (near-IR) wavelengths with moderate spectral resolution located beyond the orbit of Pluto. A carefully designed survey with New Horizons can optimize the use of expendable propellant and the limited data telemetry bandwidth to allow several measurements, including a detailed understanding of the cosmic extragalactic background light; studies of the local and extragalactic UV background; measurements of the properties of dust and ice in the outer solar system; confirmation and characterization of transiting exoplanets; determinations of the mass of dark objects using gravitational microlensing; and rapid follow-up of transient events. New Horizons is currently in an extended mission designed to focus on Kuiper Belt science that will conclude in 2021. The astrophysics community has a unique, generational opportunity to use this mission for astronomical observation at heliocentric distances beyond 50 au in the next decade. In this paper, we discuss the potential science cases for such an extended mission, and provide an initial assessment of the most important operational requirements and observation strategies it would require. We conclude that New Horizons is capable of transformative science, and that it would make a valuable and unique asset for astrophysical science that is unlikely to be replicated in the near future.
136 - Sang Pyo Kim 2019
Recent observations of gravitational waves from binary mergers of black holes or neutron stars and the rapid development of ultra-intense lasers lead strong field physics to a frontier of new physics in the 21st century. Strong gravity phenomena are most precisely described by general relativity, and lasers that are described by another most precisely tested quantum electrodynamics (QED) can be focused into a tiny area in a short period through the chirped pulse amplification and generate extremely high intensity electromagnetic (EM) fields beyond the conventional methods. It is physically interesting to study QED phenomena in curved spacetimes, in which both strong gravitational and electromagnetic fields play important roles. There are many sources for strong gravitational and electromagnetic fields in the sky or universe, such highly magnetized neutron stars, magnetized black holes, and the early universe. We review quantum field theoretical frameworks for QED both in the Minkowski spacetime and curved spacetimes, in particular, charged black holes and the early universe, and discuss the QED physics in strong EM fields, such as the vacuum polarization and Schwinger pair production and their implications to astrophysics and cosmology.
As the Cosmology and Fundamental Physics (CFP) panel is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of the early universe, the microwave background, the reionization and galaxy formation up to virialization of protogalaxies, large scale structure, the intergalactic medium, the determination of cosmological parameters, dark matter, dark energy, tests of gravity, astronomically determined physical constants, and high energy physics using astronomical messengers. Central to the progress in these areas are the corresponding advances in laboratory astrophysics which are required for fully realizing the CFP scientific opportunities within the decade 2010-2020. Laboratory astrophysics comprises both theoretical and experimental studies of the underlying physics which produce the observed astrophysical processes. The 5 areas of laboratory astrophysics which we have identified as relevant to the CFP panel are atomic, molecular, plasma, nuclear, and particle physics. Here, Section 2 describes some of the new scientific opportunities and compelling scientific themes which will be enabled by advances in laboratory astrophysics. In Section 3, we provide the scientific context for these opportunities. Section 4 briefly discusses some of the experimental and theoretical advances in laboratory astrophysics required to realize the CFP scientific opportunities of the next decade. As requested in the Call for White Papers, Section 5 presents four central questions and one area with unusual discovery potential. Lastly, we give a short postlude in Section 6.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا