ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Learning of Non-Interacting Fermion Distributions

53   0   0.0 ( 0 )
 نشر من قبل Sabee Grewal
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We give an efficient classical algorithm that recovers the distribution of a non-interacting fermion state over the computational basis. For a system of $n$ non-interacting fermions and $m$ modes, we show that $O(m^2 n^4 log(m/delta)/ varepsilon^4)$ samples and $O(m^4 n^4 log(m/delta)/ varepsilon^4)$ time are sufficient to learn the original distribution to total variation distance $varepsilon$ with probability $1 - delta$. Our algorithm empirically estimates the one- and two-mode correlations and uses them to reconstruct a succinct description of the entire distribution efficiently.



قيم البحث

اقرأ أيضاً

312 - Haoran Sun , Jie Zou , Xiaopeng Li 2021
Fermion sampling is to generate probability distribution of a many-body Slater-determinant wavefunction, which is termed determinantal point process in statistical analysis. For its inherently-embedded Pauli exclusion principle, its application reach es beyond simulating fermionic quantum many-body physics to constructing machine learning models for diversified datasets. Here we propose a fermion sampling algorithm, which has a polynomial time-complexity -- quadratic in the fermion number and linear in the system size. This algorithm is about 100% more efficient in computation time than the best known algorithms. In sampling the corresponding marginal distribution, our algorithm has a more drastic improvement, achieving a scaling advantage. We demonstrate its power on several test applications, including sampling fermions in a many-body system and a machine learning task of text summarization, and confirm its improved computation efficiency over other methods by counting floating-point operations.
We introduce a new method for representing the low energy subspace of a bosonic field theory on the qubit space of digital quantum computers. This discretization leads to an exponentially precise description of the subspace of the continuous theory t hanks to the Nyquist-Shannon sampling theorem. The method makes the implementation of quantum algorithms for purely bosonic systems as well as fermion-boson interacting systems feasible. We present algorithmic circuits for computing the time evolution of these systems. The complexity of the algorithms scales polynomially with the system size. The algorithm is a natural extension of the existing quantum algorithms for simulating fermion systems in quantum chemistry and condensed matter physics to systems involving bosons and fermion-boson interactions and has a broad variety of potential applications in particle physics, condensed matter, etc. Due to the relatively small amount of additional resources required by the inclusion of bosons in our algorithm, the simulation of electron-phonon and similar systems can be placed in the same near-future reach as the simulation of interacting electron systems. We benchmark our algorithm by implementing it for a $2$-site Holstein polaron problem on an Atos Quantum Learning Machine (QLM) quantum simulator. The polaron quantum simulations are in excellent agreement with the results obtained by exact diagonalization.
We propose a method of simulating efficiently many-body interacting fermion lattice models in trapped ions, including highly nonlinear interactions in arbitrary spatial dimensions and for arbitrarily distant couplings. We map products of fermionic op erators onto nonlocal spin operators and decompose the resulting dynamics in efficient steps with Trotter methods, yielding an overall protocol that employs only polynomial resources. The proposed scheme can be relevant in a variety of fields as condensed-matter or high-energy physics, where quantum simulations may solve problems intractable for classical computers.
The exploration of quantum algorithms that possess quantum advantages is a central topic in quantum computation and quantum information processing. One potential candidate in this area is quantum generative adversarial learning (QuGAL), which concept ually has exponential advantages over classical adversarial networks. However, the corresponding learning algorithm remains obscured. In this paper, we propose the first quantum generative adversarial learning algorithm-- the quantum multiplicative matrix weight algorithm (QMMW)-- which enables the efficient processing of fundamental tasks. The computational complexity of QMMW is polynomially proportional to the number of training rounds and logarithmically proportional to the input size. The core concept of the proposed algorithm combines QuGAL with online learning. We exploit the implementation of QuGAL with parameterized quantum circuits, and numerical experiments for the task of entanglement test for pure state are provided to support our claims.
The efficient preparation of input distributions is an important problem in obtaining quantum advantage in a wide range of domains. We propose a novel quantum algorithm for the efficient preparation of arbitrary normal distributions in quantum regist ers. To the best of our knowledge, our work is the first to leverage the power of Mid-Circuit Measurement and Reuse (MCMR), in a way that is broadly applicable to a range of state-preparation problems. Specifically, our algorithm employs a repeat-until-success scheme, and only requires a constant-bounded number of repetitions in expectation. In the experiments presented, the use of MCMR enables up to a 862.6x reduction in required qubits. Furthermore, the algorithm is provably resistant to both phase-flip and bit-flip errors, leading to a first-of-its-kind empirical demonstration on real quantum hardware, the MCMR-enabled Honeywell System Model H0.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا