ﻻ يوجد ملخص باللغة العربية
We show that in electron-hole bilayers with excitonic order arising from conduction and valence bands formed by atomic orbitals that transform differently under inversion, nonzero interlayer tunneling leads to a second order Josephson effect. This means the interlayer electrical current is related to the phase of the excitonic order parameter as $J = J_c sin2theta$ instead of $J = J_c sin theta$, and that the system has two degenerate ground states that can be switched by an interlayer voltage. In a three dimensional stack of alternating electron-hole planes or a two dimensional stack of chains, the second order Josephson coupling can lead to a Weyl semimetal or a quantum anomalous hall insulator, respectively. A generic order parameter steering effect is demonstrated, whereby electric field pulses perpendicular to the layers and chains can steer the order parameter phase between the two degenerate ground states. The steering is also applicable to the excitonic insulator candidate Ta$_2$NiSe$_5$.
Bardasis-Schrieffer modes in superconductors are fluctuations in subdominant pairing channels, e.g., d-wave fluctuations in an s-wave superconductor. This Rapid Communication shows that these modes also generically occur in excitonic insulators. In s
We study the surface states and chiral hinge states of a 3D second-order topological insulator in the presence of an external magnetic gauge field. Surfaces pierced by flux host Landau levels, while surfaces parallel to the applied field are not sign
We show that in excitonic insulators with $s$-wave electron-hole pairing, an applied electric field (either pulsed or static) can induce a $p$-wave component to the order parameter, and further drive it to rotate in the $s+ip$ plane, realizing a Thou
We propose a mechanism of the spin Seebeck effect attributed to excitonic condensation in a nonmagnetic insulator. We analyze a half-filled two-orbital Hubbard model with a crystalline field splitting in the strong coupling limit. In this model, the
Motivated by the discovery of the quantum anomalous Hall effect in Cr-doped ce{(Bi,Sb)2Te3} thin films, we study the generic states for magnetic topological insulators and explore the physical properties for both magnetism and itinerant electrons. Fi