ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Seebeck Effect in Nonmagnetic Excitonic Insulators

77   0   0.0 ( 0 )
 نشر من قبل Joji Nasu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a mechanism of the spin Seebeck effect attributed to excitonic condensation in a nonmagnetic insulator. We analyze a half-filled two-orbital Hubbard model with a crystalline field splitting in the strong coupling limit. In this model, the competition between the crystalline field and electron correlations brings about an excitonic insulating state, where the two orbitals are spontaneously hybridized. Using the generalized spin-wave theory and Boltzmann transport equation, we find that a spin current generated by a thermal gradient is observed in the excitonic insulating state without magnetic fields. The spin Seebeck effect originates from spin-split collective excitation modes although the ground state does not exhibit any magnetic orderings. This peculiar phenomenon is inherent in the excitonic insulating state, whose order parameter is time-reversal odd and yields a spin splitting for the collective excitation modes. We also find that the spin current is strongly enhanced and its direction is inverted in the vicinity of the phase transition to another magnetically ordered phase. We suggest that the present phenomenon is possibly observed in perovskite cobaltites with the GdFeO$_3$-type lattice distortion.



قيم البحث

اقرأ أيضاً

Investigating exotic magnetic materials with spintronic techniques is effective at advancing magnetism as well as spintronics. In this work, we report unusual field-induced suppression of the spin-Seebeck effect (SSE) in a quasi one-dimensional frust rated spin-$frac{1}{2}$ magnet LiCuVO$_4$, known to exhibit spin-nematic correlation in a wide range of external magnetic field $B$. The suppression takes place above $|B| > 2$ T in spite of the $B$-linear isothermal magnetization curves in the same $B$ range. The result can be attributed to the growth of the spin-nematic correlation while increasing $B$. The correlation stabilizes magnon pairs carrying spin-2, thereby suppressing the interfacial spin injection of SSE by preventing the spin-1 exchange between single magnons and conduction electrons at the interface. This interpretation is supported by integrating thermodynamic measurements and theoretical analysis on the SSE.
We show that in electron-hole bilayers with excitonic order arising from conduction and valence bands formed by atomic orbitals that transform differently under inversion, nonzero interlayer tunneling leads to a second order Josephson effect. This me ans the interlayer electrical current is related to the phase of the excitonic order parameter as $J = J_c sin2theta$ instead of $J = J_c sin theta$, and that the system has two degenerate ground states that can be switched by an interlayer voltage. In a three dimensional stack of alternating electron-hole planes or a two dimensional stack of chains, the second order Josephson coupling can lead to a Weyl semimetal or a quantum anomalous hall insulator, respectively. A generic order parameter steering effect is demonstrated, whereby electric field pulses perpendicular to the layers and chains can steer the order parameter phase between the two degenerate ground states. The steering is also applicable to the excitonic insulator candidate Ta$_2$NiSe$_5$.
101 - Saikat Banerjee , Umesh Kumar , 2021
The inverse Faraday effect (IFE), where a static magnetization is induced by circularly polarized light, offers a promising route to ultrafast control of spin states. Here we study the inverse Faraday effect in Mott insulators using the Floquet theor y. In the Mott insulators with inversion symmetry, we find that the effective magnetic field induced by the IFE couples ferromagnetically to the neighboring spins. While for the Mott insulators without inversion symmetry, the effective magnetic field due to IFE couples antiferromagnetically to the neighboring spins. We apply the theory to the spin-orbit coupled single- and multi-orbital Hubbard model that is relevant for the Kitaev quantum spin liquid materials and demonstrate that the magnetic interactions can be tuned by light.
A new measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total signal can be disentangled, allowing to extract the voltage signal solely caused by the spin Seebeck effect. To this end we performed measurements as a function of the external magnetic field strength and its orientation. We find that the effect scales linearly with the induced rise in temperature, as expected for the spin Seebeck effect.
Bardasis-Schrieffer modes in superconductors are fluctuations in subdominant pairing channels, e.g., d-wave fluctuations in an s-wave superconductor. This Rapid Communication shows that these modes also generically occur in excitonic insulators. In s -wave excitonic insulators, a p-wave Bardasis-Schrieffer mode exists below the gap energy, is optically active and hybridizes strongly with photons to form Bardasis-Schrieffer polaritons, which are observable in both far-field and near-field optical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا