ترغب بنشر مسار تعليمي؟ اضغط هنا

Versatile and Robust Transient Stability Assessment via Instance Transfer Learning

80   0   0.0 ( 0 )
 نشر من قبل Seyedali Meghdadi Mr
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

To support N-1 pre-fault transient stability assessment, this paper introduces a new data collection method in a data-driven algorithm incorporating the knowledge of power system dynamics. The domain knowledge on how the disturbance effect will propagate from the fault location to the rest of the network is leveraged to recognise the dominant conditions that determine the stability of a system. Accordingly, we introduce a new concept called Fault-Affected Area, which provides crucial information regarding the unstable region of operation. This information is embedded in an augmented dataset to train an ensemble model using an instance transfer learning framework. The test results on the IEEE 39-bus system verify that this model can accurately predict the stability of previously unseen operational scenarios while reducing the risk of false prediction of unstable instances compared to standard approaches.



قيم البحث

اقرأ أيضاً

The design of building heating, ventilation, and air conditioning (HVAC) system is critically important, as it accounts for around half of building energy consumption and directly affects occupant comfort, productivity, and health. Traditional HVAC c ontrol methods are typically based on creating explicit physical models for building thermal dynamics, which often require significant effort to develop and are difficult to achieve sufficient accuracy and efficiency for runtime building control and scalability for field implementations. Recently, deep reinforcement learning (DRL) has emerged as a promising data-driven method that provides good control performance without analyzing physical models at runtime. However, a major challenge to DRL (and many other data-driven learning methods) is the long training time it takes to reach the desired performance. In this work, we present a novel transfer learning based approach to overcome this challenge. Our approach can effectively transfer a DRL-based HVAC controller trained for the source building to a controller for the target building with minimal effort and improved performance, by decomposing the design of neural network controller into a transferable front-end network that captures building-agnostic behavior and a back-end network that can be efficiently trained for each specific building. We conducted experiments on a variety of transfer scenarios between buildings with different sizes, numbers of thermal zones, materials and layouts, air conditioner types, and ambient weather conditions. The experimental results demonstrated the effectiveness of our approach in significantly reducing the training time, energy cost, and temperature violations.
A multivariate density forecast model based on deep learning is designed in this paper to forecast the joint cumulative distribution functions (JCDFs) of multiple security margins in power systems. Differing from existing multivariate density forecas t models, the proposed method requires no a priori hypotheses on the distribution of forecasting targets. In addition, based on the universal approximation capability of neural networks, the value domain of the proposed approach has been proven to include all continuous JCDFs. The forecasted JCDF is further employed to calculate the deterministic security assessment index evaluating the security level of future power system operations. Numerical tests verify the superiority of the proposed method over current multivariate density forecast models. The deterministic security assessment index is demonstrated to be more informative for operators than security margins as well.
The combination of machine learning with control offers many opportunities, in particular for robust control. However, due to strong safety and reliability requirements in many real-world applications, providing rigorous statistical and control-theor etic guarantees is of utmost importance, yet difficult to achieve for learning-based control schemes. We present a general framework for learning-enhanced robust control that allows for systematic integration of prior engineering knowledge, is fully compatible with modern robust control and still comes with rigorous and practically meaningful guarantees. Building on the established Linear Fractional Representation and Integral Quadratic Constraints framework, we integrate Gaussian Process Regression as a learning component and state-of-the-art robust controller synthesis. In a concrete robust control example, our approach is demonstrated to yield improved performance with more data, while guarantees are maintained throughout.
This paper proposes a robust transient stability constrained optimal power flow problem that addresses renewable uncertainties by the coordination of generation re-dispatch and power flow router (PFR) tuning.PFR refers to a general type of network-si de controller that enlarges the feasible region of the OPF problem. The coordination between network-side and generator-side control in the proposed model is more general than the traditional methods which focus on generation dispatch only. An offline-online solution framework is developed to solve the problem efficiently. Under this framework the original problem is significantly simplified, so that we only need to solve a low-dimensional deterministic problem at the online stage to achieve real-time implementation with a high robustness level. The proposed method is verified on the modified New England 39-bus system. Numerical results demonstrate that the proposed method is efficient and shows good performance on economy and robustness.
The need for robust control laws is especially important in safety-critical applications. We propose robust hybrid control barrier functions as a means to synthesize control laws that ensure robust safety. Based on this notion, we formulate an optimi zation problem for learning robust hybrid control barrier functions from data. We identify sufficient conditions on the data such that feasibility of the optimization problem ensures correctness of the learned robust hybrid control barrier functions. Our techniques allow us to safely expand the region of attraction of a compass gait walker that is subject to model uncertainty.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا