ﻻ يوجد ملخص باللغة العربية
We present a new dynamical proof of the Thouless-Anderson-Palmer (TAP) equations for the classical Sherrington-Kirkpatrick spin glass at sufficiently high temperature. In our derivation, the TAP equations are a simple consequence of the decay of the two point correlation functions. The methods can also be used to establish the decay of higher order correlation functions. We illustrate this by proving a suitable decay bound on the three point functions from which we derive an analogue of the TAP equations for the two point functions.
The cavity and TAP equations are high-dimensional systems of nonlinear equations of the local magnetization in the Sherrington-Kirkpatrick model. In the seminal work [Comm. Math. Phys., 325(1):333-366, 2014], Bolthausen introduced an iterative scheme
We introduce a transfer matrix formalism for the (annealed) Ising model coupled to two-dimensional causal dynamical triangulations. Using the Krein-Rutman theory of positivity preserving operators we study several properties of the emerging transfer
We use a probabilistic approach to study the rate of convergence to equilibrium for a collisionless (Knudsen) gas in dimension equal to or larger than 2. The use of a coupling between two stochastic processes allows us to extend and refine, in total
We argue that when the number of spins $N$ in the SK model is finite, the Parisi scheme can be terminated after $K$ replica-symmetry breaking steps, where $K(N) propto N^{1/6}$. We have checked this idea by Monte Carlo simulations: we expect the typi
We derive mean-field equations for a general class of ferromagnetic spin systems with an explicit error bound in finite volumes. The proof is based on a link between the mean-field equation and the free convolution formalism of random matrix theory,