ﻻ يوجد ملخص باللغة العربية
Motivated by the appearance of fractional powers of line bundles in studies of vector-like spectra in 4d F-theory compactifications, we analyze the structure and origin of these bundles. Fractional powers of line bundles are also known as root bundles and can be thought of as generalizations of spin bundles. We explain how these root bundles are linked to inequivalent F-theory gauge potentials of a $G_4$-flux. While this observation is interesting in its own right, it is particularly valuable for F-theory Standard Model constructions. In aiming for MSSMs, it is desired to argue for the absence of vector-like exotics. We work out the root bundle constraints on all matter curves in the largest class of currently-known F-theory Standard Model constructions without chiral exotics and gauge coupling unification. On each matter curve, we conduct a systematic bottom-analysis of all solutions to the root bundle constraints and all spin bundles. Thereby, we derive a lower bound for the number of combinations of root bundles and spin bundles whose cohomologies satisfy the physical demand of absence of vector-like pairs. On a technical level, this systematic study is achieved by a well-known diagrammatic description of root bundles on nodal curves. We extend this description by a counting procedure, which determines the cohomologies of so-called limit root bundles on full blow-ups of nodal curves. By use of deformation theory, these results constrain the vector-like spectra on the smooth matter curves in the actual F-theory geometry.
Motivated by engineering vector-like (Higgs) pairs in the spectrum of 4d F-theory compactifications, we combine machine learning and algebraic geometry techniques to analyze line bundle cohomologies on families of holomorphic curves. To quantify jump
Motivated by questions related to the landscape of flux compactifications, we combine new and existing techniques into a systematic, streamlined approach for computing vertical fluxes and chiral matter multiplicities in 4D F-theory models. A central
In recent work, we conjectured that Calabi-Yau threefolds defined over $mathbb{Q}$ and admitting a supersymmetric flux compactification are modular, and associated to (the Tate twists of) weight-two cuspidal Hecke eigenforms. In this work, we will ad
We present the three-loop calculation of the Bremsstrahlung function associated to the 1/2-BPS cusp in ABJM theory, including color subleading corrections. Using the BPS condition we reduce the computation to that of a cusp with vanishing angle. We w
We analyze exotic matter representations that arise on singular seven-brane configurations in F-theory. We develop a general framework for analyzing such representations, and work out explicit descriptions for models with matter in the 2-index and 3-