ﻻ يوجد ملخص باللغة العربية
We determine thresholds $p_c$ for random-site percolation on a triangular lattice for all available neighborhoods containing sites from the first to the fifth coordination zones, including their complex combinations. There are 31 distinct neighbourhoods. The dependence of the value of the percolation thresholds $p_c$ on the coordination number $z$ are tested against various theoretical predictions. The newly proposed single scalar index $xi=sum_i z_ir_i^2/i$ (depending on the coordination zone number $i$, the neighbourhood coordination number $z$ and the square-distance $r^2$ to sites in $i$-th coordination zone from the central site) allows to differentiate among various neighbourhoods and relate $p_c$ to $xi$. The thresholds roughly follow a power law $p_cproptoxi^{-gamma}$ with $gammaapprox 0.710(19)$.
We determine thresholds $p_c$ for random site percolation on a triangular lattice for neighbourhoods containing nearest (NN), next-nearest (2NN), next-next-nearest (3NN), next-next-next-nearest (4NN) and next-next-next-next-nearest (5NN) neighbours,
In the paper random-site percolation thresholds for simple cubic lattice with sites neighborhoods containing next-next-next-nearest neighbors (4NN) are evaluated with Monte Carlo simulations. A recently proposed algorithm with low sampling for percol
We derive exact results for close-packed dimers on the triangular kagome lattice (TKL), formed by inserting triangles into the triangles of the kagome lattice. Because the TKL is a non-bipartite lattice, dimer-dimer correlations are short-ranged, so
Chase-escape percolation is a variation of the standard epidemic spread models. In this model, each site can be in one of three states: unoccupied, occupied by a single prey, or occupied by a single predator. Prey particles spread to neighboring empt
The recently fabricated two-dimensional magnetic materials Cu9X2(cpa)6.xH2O (cpa=2-carboxypentonic acid; X=F,Cl,Br) have copper sites which form a triangular kagome lattice (TKL), formed by introducing small triangles (``a-trimers) inside of each kag