ﻻ يوجد ملخص باللغة العربية
We determine thresholds $p_c$ for random site percolation on a triangular lattice for neighbourhoods containing nearest (NN), next-nearest (2NN), next-next-nearest (3NN), next-next-next-nearest (4NN) and next-next-next-next-nearest (5NN) neighbours, and their combinations forming regular hexagons (3NN+2NN+NN, 5NN+4NN+NN, 5NN+4NN+3NN+2NN, 5NN+4NN+3NN+2NN+NN). We use a fast Monte Carlo algorithm, by Newman and Ziff [M. E. J. Newman and R. M. Ziff, Physical Review E 64, 016706 (2001)], for obtaining the dependence of the largest cluster size on occupation probability. The method is combined with a method, by Bastas et al. [N. Bastas, K. Kosmidis, P. Giazitzidis, and M. Maragakis, Physical Review E 90, 062101 (2014)], of estimating thresholds from low statistics data. The estimated values of percolation thresholds are $p_c(text{4NN})=0.192410(43)$, $p_c(text{3NN+2NN})=0.232008(38)$, $p_c(text{5NN+4NN})=0.140286(5)$, $p_c(text{3NN+2NN+NN})=0.215484(19)$, $p_c(text{5NN+4NN+NN})=0.131792(58)$, $p_c(text{5NN+4NN+3NN+2NN})=0.117579(41)$, $p_c(text{5NN+4NN+3NN+2NN+NN})=0.115847(21)$. The method is tested on the standard case of site percolation on triangular lattice, where $p_c(text{NN})=p_c(text{2NN})=p_c(text{3NN})=p_c(text{5NN})=frac{1}{2}$ is recovered with five digits accuracy $p_c(text{NN})=0.500029(46)$ by averaging over one thousand lattice realisations only.
In the paper random-site percolation thresholds for simple cubic lattice with sites neighborhoods containing next-next-next-nearest neighbors (4NN) are evaluated with Monte Carlo simulations. A recently proposed algorithm with low sampling for percol
We determine thresholds $p_c$ for random-site percolation on a triangular lattice for all available neighborhoods containing sites from the first to the fifth coordination zones, including their complex combinations. There are 31 distinct neighbourho
By means of Monte Carlo simulations, we study long-range site percolation on square and simple cubic lattices with various combinations of nearest neighbors, up to the eighth neighbors for the square lattice and the ninth neighbors for the simple cub
As a fundamental structural transition in complex networks, core percolation is related to a wide range of important problems. Yet, previous theoretical studies of core percolation have been focusing on the classical ErdH{o}s-Renyi random networks wi
We derive exact results for close-packed dimers on the triangular kagome lattice (TKL), formed by inserting triangles into the triangles of the kagome lattice. Because the TKL is a non-bipartite lattice, dimer-dimer correlations are short-ranged, so