ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Observations of Orbital Diamagnetism and Excitation in Three-Dimensional Dirac Fermion Systems Bi$_{1-x}$Sb$_x$

51   0   0.0 ( 0 )
 نشر من قبل Yasuhiro Shimizu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dirac fermions display a singular response against magnetic and electric fields. A distinct manifestation is large diamagnetism originating in the interband effect of Bloch bands, as observed in bismuth alloys. Through $^{209}$Bi NMR spectroscopy, we extract diamagnetic orbital susceptibility inherent to Dirac fermions in the semiconducting bismuth alloys Bi$_{1-x}$Sb$_x$ ($x = 0.08 - 0.16$). The $^{209}$Bi hyperfine coupling constant provides an estimate of the effective orbital radius. In addition to the interband diamagnetism, Knight shift includes an anomalous temperature-independent term originating in the enhanced intraband diamagnetism under strong spin-orbit coupling. The nuclear spin-lattice relaxation rate $1/T_1$ is dominated by orbital excitation and follows cubic temperature dependence in the extensive temperature range. The result demonstrates the robust diamagnetism and low-lying orbital excitation against the small gap opening, whereas $x$-dependent spin excitation appears at low temperatures.

قيم البحث

اقرأ أيضاً

A topological p-n junction (TPNJ) is an important concept to control spin and charge transport on a surface of three dimensional topological insulators (3D-TIs). Here we report successful fabrication of such TPNJ on a surface of 3D-TI Bi$_{2-x}$Sb$_x $Te$_{3-y}$Se$_y$ thin films and experimental observation of the electrical transport. By tuning the chemical potential of n-type topological Dirac surface of BSTS on its top half by employing tetrafluoro-7,7,8,8-tetracyanoquinodimethane as an organic acceptor molecule, a half surface can be converted to p-type with leaving the other half side as the opposite n-type, and consequently TPNJ can be created. By sweeping the back-gate voltage in the field effect transistor structure, the TPNJ was controlled both on the bottom and the top surfaces. A dramatic change in electrical transport observed at the TPNJ on 3D-TI thin films promises novel spin and charge transport of 3D-TIs for future spintronics.
In Dirac semimetals, inter-band mixing has been known theoretically to give rise to a giant orbital diamagnetism when the Fermi level is close to the Dirac point. In Bi$ _{1-x}$Sb$ _x$ and other Dirac semimetals, an enhanced diamagnetism in the magne tic susceptibility $chi$ has been observed and interpreted as a manifestation of such giant orbital diamagnetism. Experimentally proving their orbital origin, however, has remained challenging. Cubic antiperovskite Sr$ _3$PbO is a three-dimensional Dirac electron system and shows the giant diamagnetism in $chi$ as in the other Dirac semimetals. $ ^{207}$Pb NMR measurements are conducted in this study to explore the microscopic origin of diamagnetism. From the analysis of the Knight shift $K$ as a function of $chi$ and the relaxation rate $T_1^{-1}$ for samples with different hole densities, the spin and the orbital components in $K$ are successfully separated. The results establish that the enhanced diamagnetism in Sr$ _3$PbO originates from the orbital contribution of Dirac electrons, which is fully consistent with the theory of giant orbital diamagnetism.
Alloys of Bi$_2$Te$_3$ and Sb$_2$Te$_3$ ((Bi$_{1-x}$Sb$_x$)$_2$Te$_3$) have played an essential role in the exploration of topological surface states, allowing us to study phenomena that would otherwise be obscured by bulk contributions to conductivi ty. Thin films of these alloys have been particularly important for tuning the energy of the Fermi level, a key step in observing spin-polarized surface currents and the quantum anomalous Hall effect. Previous studies reported the chemical tuning of the Fermi level to the Dirac point by controlling the Sb:Bi composition ratio, but the optimum ratio varies widely across various studies with no consensus. In this work, we use scanning tunneling microscopy and Landau level spectroscopy, in combination with X-ray photoemission spectroscopy to isolate the effects of growth factors such as temperature and composition, and to provide a microscopic picture of the role that disorder and composition play in determining the carrier density of epitaxially grown (Bi,Sb)$_2$Te$_3$ thin films. Using Landau level spectroscopy, we determine that the ideal Sb concentration to place the Fermi energy to within a few meV of the Dirac point is $xsim 0.7$. However, we find that the post- growth annealing temperature can have a drastic impact on microscopic structure as well as carrier density. In particular, we find that when films are post-growth annealed at high temperature, better crystallinity and surface roughness are achieved; but this also produces a larger Te defect density, adding n-type carriers. This work provides key information necessary for optimizing thin film quality in this fundamentally and technologically important class of materials.
The field of topological materials science has recently been focussing on three-dimensional Dirac semimetals, which exhibit robust Dirac phases in the bulk. However, the absence of characteristic surface states in accidental Dirac semimetals (DSM) ma kes it difficult to experimentally verify claims about the topological nature using commonly used surface-sensitive techniques. The chiral magnetic effect (CME), which originates from the Weyl nodes, causes an $textbf{E}cdottextbf{B}$-dependent chiral charge polarization, which manifests itself as negative magnetoresistance. We exploit the extended lifetime of the chirally polarized charge and study the CME through both local and non-local measurements in Hall bar structures fabricated from single crystalline flakes of the DSM Bi$_{0.97}$Sb$_{0.03}$. From the non-local measurement results we find a chiral charge relaxation time which is over one order of magnitude larger than the Drude transport lifetime, underlining the topological nature of Bi$_{0.97}$Sb$_{0.03}$.
109 - H. Plank , L. E. Golub , S. Bauer 2015
We report on the observation of a terahertz radiation induced photon drag effect in epitaxially grown $n$- and $p$-type (Bi$_{1-x}$Sb$_{x}$)$_{2}$Te$_{3}$ three dimensional topological insulators with different antimony concentrations $x$ varying fro m 0 to 1. We demonstrate that the excitation with polarized terahertz radiation results in a $dc$ electric photocurrent. While at normal incidence a current arises due to the photogalvanic effect in the surface states, at oblique incidence it is outweighed by the trigonal photon drag effect. The developed microscopic model and theory show that the photon drag photocurrent is due to the dynamical momentum alignment by time and space dependent radiation electric field and implies the radiation induced asymmetric scattering in the electron momentum space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا