ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential Privacy-based Permissioned Blockchain for Private Data Sharing in Industrial IoT

100   0   0.0 ( 0 )
 نشر من قبل Muhammad Islam
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Permissioned blockchain such as Hyperledger fabric enables a secure supply chain model in Industrial Internet of Things (IIoT) through multichannel and private data collection mechanisms. Sharing of Industrial data including private data exchange at every stage between supply chain partners helps to improve product quality, enable future forecast, and enhance management activities. However, the existing data sharing and querying mechanism in Hyperledger fabric is not suitable for supply chain environment in IIoT because the queries are evaluated on actual data stored on ledger which consists of sensitive information such as business secrets, and special discounts offered to retailers and individuals. To solve this problem, we propose a differential privacy-based permissioned blockchain using Hyperledger fabric to enable private data sharing in supply chain in IIoT (DH-IIoT). We integrate differential privacy into the chaindcode (smart contract) of Hyperledger fabric to achieve privacy preservation. As a result, the query response consists of perturbed data which protects the sensitive information in the ledger. The proposed work (DH-IIoT) is evaluated by simulating a permissioned blockchain using Hyperledger fabric. We compare our differential privacy integrated chaincode of Hyperledger fabric with the default chaincode setting of Hyperledger fabric for supply chain scenario. The results confirm that the proposed work maintains 96.15% of accuracy in the shared data while guarantees the protection of sensitive ledgers data.



قيم البحث

اقرأ أيضاً

The advancement in cloud networks has enabled connectivity of both traditional networked elements and new devices from all walks of life, thereby forming the Internet of Things (IoT). In an IoT setting, improving and scaling network components as wel l as reducing cost is essential to sustain exponential growth. In this domain, software-defined networking (SDN) is revolutionizing the network infrastructure with a new paradigm. SDN splits the control/routing logic from the data transfer/forwarding. This splitting causes many issues in SDN, such as vulnerabilities of DDoS attacks. Many solutions (including blockchain based) have been proposed to overcome these problems. In this work, we offer a blockchain-based solution that is provided in redundant SDN (load-balanced) to service millions of IoT devices. Blockchain is considered as tamper-proof and impossible to corrupt due to the replication of the ledger and consensus for verification and addition to the ledger. Therefore, it is a perfect fit for SDN in IoT Networks. Blockchain technology provides everyone with a working proof of decentralized trust. The experimental results show gain and efficiency with respect to the accuracy, update process, and bandwidth utilization.
Privacy preservation is a big concern for various sectors. To protect individual user data, one emerging technology is differential privacy. However, it still has limitations for datasets with frequent queries, such as the fast accumulation of privac y cost. To tackle this limitation, this paper explores the integration of a secured decentralised ledger, blockchain. Blockchain will be able to keep track of all noisy responses generated with differential privacy algorithm and allow for certain queries to reuse old responses. In this paper, a demo of a proposed blockchain-based privacy management system is designed as an interactive decentralised web application (DApp). The demo created illustrates that leveraging on blockchain will allow the total privacy cost accumulated to decrease significantly.
Privacy-preserving genomic data sharing is prominent to increase the pace of genomic research, and hence to pave the way towards personalized genomic medicine. In this paper, we introduce ($epsilon , T$)-dependent local differential privacy (LDP) for privacy-preserving sharing of correlated data and propose a genomic data sharing mechanism under this privacy definition. We first show that the original definition of LDP is not suitable for genomic data sharing, and then we propose a new mechanism to share genomic data. The proposed mechanism considers the correlations in data during data sharing, eliminates statistically unlikely data values beforehand, and adjusts the probability distributions for each shared data point accordingly. By doing so, we show that we can avoid an attacker from inferring the correct values of the shared data points by utilizing the correlations in the data. By adjusting the probability distributions of the shared states of each data point, we also improve the utility of shared data for the data collector. Furthermore, we develop a greedy algorithm that strategically identifies the processing order of the shared data points with the aim of maximizing the utility of the shared data. Considering the interdependent privacy risks while sharing genomic data, we also analyze the information gain of an attacker about genomes of a donors family members by observing perturbed data of the genome donor and we propose a mechanism to select the privacy budget (i.e., $epsilon$ parameter of LDP) of the donor by also considering privacy preferences of her family members. Our evaluation results on a real-life genomic dataset show the superiority of the proposed mechanism compared to the randomized response mechanism (a widely used technique to achieve LDP).
Due to the strong analytical ability of big data, deep learning has been widely applied to train the collected data in industrial IoT. However, for privacy issues, traditional data-gathering centralized learning is not applicable to industrial scenar ios sensitive to training sets. Recently, federated learning has received widespread attention, since it trains a model by only relying on gradient aggregation without accessing training sets. But existing researches reveal that the shared gradient still retains the sensitive information of the training set. Even worse, a malicious aggregation server may return forged aggregated gradients. In this paper, we propose the VFL, verifiable federated learning with privacy-preserving for big data in industrial IoT. Specifically, we use Lagrange interpolation to elaborately set interpolation points for verifying the correctness of the aggregated gradients. Compared with existing schemes, the verification overhead of VFL remains constant regardless of the number of participants. Moreover, we employ the blinding technology to protect the privacy of the gradients submitted by the participants. If no more than n-2 of n participants collude with the aggregation server, VFL could guarantee the encrypted gradients of other participants not being inverted. Experimental evaluations corroborate the practical performance of the presented VFL framework with high accuracy and efficiency.
Authorization or access control limits the actions a user may perform on a computer system, based on predetermined access control policies, thus preventing access by illegitimate actors. Access control for the Internet of Things (IoT) should be tailo red to take inherent IoT network scale and device resource constraints into consideration. However, common authorization systems in IoT employ conventional schemes, which suffer from overheads and centralization. Recent research trends suggest that blockchain has the potential to tackle the issues of access control in IoT. However, proposed solutions overlook the importance of building dynamic and flexible access control mechanisms. In this paper, we design a decentralized attribute-based access control mechanism with an auxiliary Trust and Reputation System (TRS) for IoT authorization. Our system progressively quantifies the trust and reputation scores of each node in the network and incorporates the scores into the access control mechanism to achieve dynamic and flexible access control. We design our system to run on a public blockchain, but we separate the storage of sensitive information, such as users attributes, to private sidechains for privacy preservation. We implement our solution in a public Rinkeby Ethereum test-network interconnected with a lab-scale testbed. Our evaluations consider various performance metrics to highlight the applicability of our solution for IoT contexts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا