ﻻ يوجد ملخص باللغة العربية
Large format arrays of transition edge sensor (TES) are crucial for the next generation of X-ray space observatories. Such arrays are required to achieve an energy resolution of $mathrm{Delta}E<$3 eV full-width-half-maximum (FWHM) in the soft X-ray energy range. We are currently developing X-ray microcalorimeter arrays as a backup option for the X-IFU instrument on board of ATHENA space telescope, led by ESA and foreseen to be launched in 2031. In this contribution, we report on the development and the characterization of a uniform 32$times$32 pixel array with (length$times $width) 140$times$30 $mu$m$^2$ TiAu TESs, which have textcolor{black}{a 2.3 $mu$m} thick Au absorber for X-ray photons. The pixels have a typical normal resistance $R_mathrm{n}$ = 121 m$Omega$ and a critical temperature $T_mathrm{c}sim$ 90 mK. We performed extensive measurements on 60 pixels out of the array in order to show the uniformity of the array. We obtained an energy resolutions between 2.4 and 2.6 eV (FWHM) at 5.9 keV, measured in a single-pixel mode at AC bias frequencies ranging from 1 to 5 MHz, with a frequency domain multiplexing (FDM) readout system, which is developed at SRON/VTT. We also present the detector energy resolution at X-ray with different photon energies generated by a modulated external X-ray source from 1.45 keV up to 8.9 keV. Multiplexing readout across several pixels has also been performed to evaluate the impact of the thermal crosstalk to the instruments energy resolution budget requirement. This value results in a derived requirement, for the first neighbour, that is less than 1$times$10$^{-3}$ when considering the ratio between the amplitude of the crosstalk signal to an X-ray pulse (for example at 5.9 keV)
We are developing a kilo-pixels Ti/Au TES array as a backup option for Athena X-IFU. Here we report on single-pixel performance of a 32$times$32 array operated in a Frequency Division Multiplexing (FDM) readout system, with bias frequencies in the ra
Uniform large transition-edge sensor (TES) arrays are fundamental for the next generation of X-ray space observatories. These arrays are required to achieve an energy resolution $Delta E$ < 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy
We report on the design and performance of a mixed-signal application specific integrated circuit (ASIC) dedicated to avalanche photodiodes (APDs) in order to detect hard X-ray emissions in a wide energy band onboard the International Space Station.
We have been developing monolithic active pixel sensors for X-rays based on the silicon-on-insulator technology. Our device consists of a low-resistivity Si layer for readout CMOS electronics, a high-resistivity Si sensor layer, and a SiO$_2$ layer b
We have been developing event-driven SOI Pixel Detectors, named `XRPIX (X-Ray soiPIXel) based on the silicon-on-insulator (SOI) pixel technology, for the future X-ray astronomical satellite with wide band coverage from 0.5 keV to 40 keV. XRPIX has ev