ﻻ يوجد ملخص باللغة العربية
Given a neural network, training data, and a threshold, it was known that it is NP-hard to find weights for the neural network such that the total error is below the threshold. We determine the algorithmic complexity of this fundamental problem precisely, by showing that it is ER-complete. This means that the problem is equivalent, up to polynomial-time reductions, to deciding whether a system of polynomial equations and inequalities with integer coefficients and real unknowns has a solution. If, as widely expected, ER is strictly larger than NP, our work implies that the problem of training neural networks is not even in NP.
In the Nikoli pencil-and-paper game Tatamibari, a puzzle consists of an $m times n$ grid of cells, where each cell possibly contains a clue among +, -, |. The goal is to partition the grid into disjoint rectangles, where every rectangle contains exac
When can $t$ terminal pairs in an $m times n$ grid be connected by $t$ vertex-disjoint paths that cover all vertices of the grid? We prove that this problem is NP-complete. Our hardness result can be compared to two previous NP-hardness proofs: Lynch
It is well-known that deciding equivalence of logic circuits is a coNP-complete problem. As a corollary, the problem of deciding weak equivalence of reversible circuits, i.e. ignoring the ancilla bits, is also coNP-complete. The complexity of decidin
We show that the decision problem of determining whether a given (abstract simplicial) $k$-complex has a geometric embedding in $mathbb R^d$ is complete for the Existential Theory of the Reals for all $dgeq 3$ and $kin{d-1,d}$. This implies that the
Training quantum neural networks (QNNs) using gradient-based or gradient-free classical optimisation approaches is severely impacted by the presence of barren plateaus in the cost landscapes. In this paper, we devise a framework for leveraging quantu