ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical Recurrent Neural Networks for Conditional Melody Generation with Long-term Structure

96   0   0.0 ( 0 )
 نشر من قبل Zixun Guo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The rise of deep learning technologies has quickly advanced many fields, including that of generative music systems. There exist a number of systems that allow for the generation of good sounding short snippets, yet, these generated snippets often lack an overarching, longer-term structure. In this work, we propose CM-HRNN: a conditional melody generation model based on a hierarchical recurrent neural network. This model allows us to generate melodies with long-term structures based on given chord accompaniments. We also propose a novel, concise event-based representation to encode musical lead sheets while retaining the notes relative position within the bar with respect to the musical meter. With this new data representation, the proposed architecture can simultaneously model the rhythmic, as well as the pitch structures in an effective way. Melodies generated by the proposed model were extensively evaluated in quantitative experiments as well as a user study to ensure the musical quality of the output as well as to evaluate if they contain repeating patterns. We also compared the system with the state-of-the-art AttentionRNN. This comparison shows that melodies generated by CM-HRNN contain more repeated patterns (i.e., higher compression ratio) and a lower tonal tension (i.e., more tonally concise). Results from our listening test indicate that CM-HRNN outperforms AttentionRNN in terms of long-term structure and overall rating.



قيم البحث

اقرأ أيضاً

395 - Shuqi Dai , Zeyu Jin , Celso Gomes 2021
Recent advances in deep learning have expanded possibilities to generate music, but generating a customizable full piece of music with consistent long-term structure remains a challenge. This paper introduces MusicFrameworks, a hierarchical music str ucture representation and a multi-step generative process to create a full-length melody guided by long-term repetitive structure, chord, melodic contour, and rhythm constraints. We first organize the full melody with section and phrase-level structure. To generate melody in each phrase, we generate rhythm and basic melody using two separate transformer-based networks, and then generate the melody conditioned on the basic melody, rhythm and chords in an auto-regressive manner. By factoring music generation into sub-problems, our approach allows simpler models and requires less data. To customize or add variety, one can alter chords, basic melody, and rhythm structure in the music frameworks, letting our networks generate the melody accordingly. Additionally, we introduce new features to encode musical positional information, rhythm patterns, and melodic contours based on musical domain knowledge. A listening test reveals that melodies generated by our method are rated as good as or better than human-composed music in the POP909 dataset about half the time.
Recommender systems objectives can be broadly characterized as modeling user preferences over short-or long-term time horizon. A large body of previous research studied long-term recommendation through dimensionality reduction techniques applied to t he historical user-item interactions. A recently introduced session-based recommendation setting highlighted the importance of modeling short-term user preferences. In this task, Recurrent Neural Networks (RNN) have shown to be successful at capturing the nuances of users interactions within a short time window. In this paper, we evaluate RNN-based models on both short-term and long-term recommendation tasks. Our experimental results suggest that RNNs are capable of predicting immediate as well as distant user interactions. We also find the best performing configuration to be a stacked RNN with layer normalization and tied item embeddings.
Recurrent neural networks (RNN) are at the core of modern automatic speech recognition (ASR) systems. In particular, long-short term memory (LSTM) recurrent neural networks have achieved state-of-the-art results in many speech recognition tasks, due to their efficient representation of long and short term dependencies in sequences of inter-dependent features. Nonetheless, internal dependencies within the element composing multidimensional features are weakly considered by traditional real-valued representations. We propose a novel quaternion long-short term memory (QLSTM) recurrent neural network that takes into account both the external relations between the features composing a sequence, and these internal latent structural dependencies with the quaternion algebra. QLSTMs are compared to LSTMs during a memory copy-task and a realistic application of speech recognition on the Wall Street Journal (WSJ) dataset. QLSTM reaches better performances during the two experiments with up to $2.8$ times less learning parameters, leading to a more expressive representation of the information.
Automatic melody generation for pop music has been a long-time aspiration for both AI researchers and musicians. However, learning to generate euphonious melody has turned out to be highly challenging due to a number of factors. Representation of mul tivariate property of notes has been one of the primary challenges. It is also difficult to remain in the permissible spectrum of musical variety, outside of which would be perceived as a plain random play without auditory pleasantness. Observing the conventional structure of pop music poses further challenges. In this paper, we propose to represent each note and its properties as a unique `word, thus lessening the prospect of misalignments between the properties, as well as reducing the complexity of learning. We also enforce regularization policies on the range of notes, thus encouraging the generated melody to stay close to what humans would find easy to follow. Furthermore, we generate melody conditioned on song part information, thus replicating the overall structure of a full song. Experimental results demonstrate that our model can generate auditorily pleasant songs that are more indistinguishable from human-written ones than previous models.
64 - You Li , Zhuowen Lin 2020
Attempts to use generative models for music generation have been common in recent years, and some of them have achieved good results. Pieces generated by some of these models are almost indistinguishable from those being composed by human composers. However, the research on the evaluation system for machine-generated music is still at a relatively early stage, and there is no uniform standard for such tasks. This paper proposes a stacked-LSTM binary classifier based on a language model, which can be used to distinguish the human composers work from the machine-generated melody by learning the MIDI files pitch, position, and duration.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا