ترغب بنشر مسار تعليمي؟ اضغط هنا

A Deep Graph Wavelet Convolutional Neural Network for Semi-supervised Node Classification

91   0   0.0 ( 0 )
 نشر من قبل Jingyi Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph convolutional neural network provides good solutions for node classification and other tasks with non-Euclidean data. There are several graph convolutional models that attempt to develop deep networks but do not cause serious over-smoothing at the same time. Considering that the wavelet transform generally has a stronger ability to extract useful information than the Fourier transform, we propose a new deep graph wavelet convolutional network (DeepGWC) for semi-supervised node classification tasks. Based on the optimized static filtering matrix parameters of vanilla graph wavelet neural networks and the combination of Fourier bases and wavelet ones, DeepGWC is constructed together with the reuse of residual connection and identity mappings in network architectures. Extensive experiments on three benchmark datasets including Cora, Citeseer, and Pubmed are conducted. The experimental results demonstrate that our DeepGWC outperforms existing graph deep models with the help of additional wavelet bases and achieves new state-of-the-art performances eventually.



قيم البحث

اقرأ أيضاً

Graph convolutional networks (GCNs) have achieved promising performance on various graph-based tasks. However they suffer from over-smoothing when stacking more layers. In this paper, we present a quantitative study on this observation and develop no vel insights towards the deeper GCN. First, we interpret the current graph convolutional operations from an optimization perspective and argue that over-smoothing is mainly caused by the naive first-order approximation of the solution to the optimization problem. Subsequently, we introduce two metrics to measure the over-smoothing on node-level tasks. Specifically, we calculate the fraction of the pairwise distance between connected and disconnected nodes to the overall distance respectively. Based on our theoretical and empirical analysis, we establish a universal theoretical framework of GCN from an optimization perspective and derive a novel convolutional kernel named GCN+ which has lower parameter amount while relieving the over-smoothing inherently. Extensive experiments on real-world datasets demonstrate the superior performance of GCN+ over state-of-the-art baseline methods on the node classification tasks.
Graph neural networks (GNNs) achieve remarkable success in graph-based semi-supervised node classification, leveraging the information from neighboring nodes to improve the representation learning of target node. The success of GNNs at node classific ation depends on the assumption that connected nodes tend to have the same label. However, such an assumption does not always work, limiting the performance of GNNs at node classification. In this paper, we propose label-consistency based graph neural network(LC-GNN), leveraging node pairs unconnected but with the same labels to enlarge the receptive field of nodes in GNNs. Experiments on benchmark datasets demonstrate the proposed LC-GNN outperforms traditional GNNs in graph-based semi-supervised node classification.We further show the superiority of LC-GNN in sparse scenarios with only a handful of labeled nodes.
Data augmentation aims to generate new and synthetic features from the original data, which can identify a better representation of data and improve the performance and generalizability of downstream tasks. However, data augmentation for graph-based models remains a challenging problem, as graph data is more complex than traditional data, which consists of two features with different properties: graph topology and node attributes. In this paper, we study the problem of graph data augmentation for Graph Convolutional Network (GCN) in the context of improving the node embeddings for semi-supervised node classification. Specifically, we conduct cosine similarity based cross operation on the original features to create new graph features, including new node attributes and new graph topologies, and we combine them as new pairwise inputs for specific GCNs. Then, we propose an attentional integrating model to weighted sum the hidden node embeddings encoded by these GCNs into the final node embeddings. We also conduct a disparity constraint on these hidden node embeddings when training to ensure that non-redundant information is captured from different features. Experimental results on five real-world datasets show that our method improves the classification accuracy with a clear margin (+2.5% - +84.2%) than the original GCN model.
Graph neural networks (GNN) have been ubiquitous in graph learning tasks such as node classification. Most of GNN methods update the node embedding iteratively by aggregating its neighbors information. However, they often suffer from negative disturb ance, due to edges connecting nodes with different labels. One approach to alleviate this negative disturbance is to use attention, but current attention always considers feature similarity and suffers from the lack of supervision. In this paper, we consider the label dependency of graph nodes and propose a decoupling attention mechanism to learn both hard and soft attention. The hard attention is learned on labels for a refined graph structure with fewer inter-class edges. Its purpose is to reduce the aggregations negative disturbance. The soft attention is learned on features maximizing the information gain by message passing over better graph structures. Moreover, the learned attention guides the label propagation and the feature propagation. Extensive experiments are performed on five well-known benchmark graph datasets to verify the effectiveness of the proposed method.
Graph Convolutional Networks (GCNs) have shown significant improvements in semi-supervised learning on graph-structured data. Concurrently, unsupervised learning of graph embeddings has benefited from the information contained in random walks. In thi s paper, we propose a model: Network of GCNs (N-GCN), which marries these two lines of work. At its core, N-GCN trains multiple instances of GCNs over node pairs discovered at different distances in random walks, and learns a combination of the instance outputs which optimizes the classification objective. Our experiments show that our proposed N-GCN model improves state-of-the-art baselines on all of the challenging node classification tasks we consider: Cora, Citeseer, Pubmed, and PPI. In addition, our proposed method has other desirable properties, including generalization to recently proposed semi-supervised learning methods such as GraphSAGE, allowing us to propose N-SAGE, and resilience to adversarial input perturbations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا