ترغب بنشر مسار تعليمي؟ اضغط هنا

Truncation-Free Matching System for Display Advertising at Alibaba

69   0   0.0 ( 0 )
 نشر من قبل Jin Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Matching module plays a critical role in display advertising systems. Without query from user, it is challenging for system to match user traffic and ads suitably. System packs up a group of users with common properties such as the same gender or similar shopping interests into a crowd. Here term crowd can be viewed as a tag over users. Then advertisers bid for different crowds and deliver their ads to those targeted users. Matching module in most industrial display advertising systems follows a two-stage paradigm. When receiving a user request, matching system (i) finds the crowds that the user belongs to; (ii) retrieves all ads that have targeted those crowds. However, in applications such as display advertising at Alibaba, with very large volumes of crowds and ads, both stages of matching have to truncate the long-tailed parts for online serving, under limited latency. Thats to say, not all ads have the chance to participate in online matching. This results in sub-optimal result for both advertising performance and platform revenue. In this paper, we study the truncation problem and propose a Truncation Free Matching System (TFMS). The basic idea is to decouple the matching computation from the online pipeline. Instead of executing the two-stage matching when user visits, TFMS utilizes a near-line truncation-free matching to pre-calculate and store those top valuable ads for each user. Then the online pipeline just needs to fetch the pre-stored ads as matching results. In this way, we can jump out of online systems latency and computation cost limitations, and leverage flexible computation resource to finish the user-ad matching. TFMS has been deployed in our productive system since 2019, bringing (i) more than 50% improvement of impressions for advertisers who encountered truncation before, (ii) 9.4% Revenue Per Mile gain, which is significant enough for the business.



قيم البحث

اقرأ أيضاً

151 - Liyi Guo , Junqi Jin , Haoqi Zhang 2021
Advertising expenditures have become the major source of revenue for e-commerce platforms. Providing good advertising experiences for advertisers by reducing their costs of trial and error in discovering the optimal advertising strategies is crucial for the long-term prosperity of online advertising. To achieve this goal, the advertising platform needs to identify the advertisers optimization objectives, and then recommend the corresponding strategies to fulfill the objectives. In this work, we first deploy a prototype of strategy recommender system on Taobao display advertising platform, which indeed increases the advertisers performance and the platforms revenue, indicating the effectiveness of strategy recommendation for online advertising. We further augment this prototype system by explicitly learning the advertisers preferences over various advertising performance indicators and then optimization objectives through their adoptions of different recommending advertising strategies. We use contextual bandit algorithms to efficiently learn the advertisers preferences and maximize the recommendation adoption, simultaneously. Simulation experiments based on Taobao online bidding data show that the designed algorithms can effectively optimize the strategy adoption rate of advertisers.
In this paper, the method UCB-RS, which resorts to recommendation system (RS) for enhancing the upper-confidence bound algorithm UCB, is presented. The proposed method is used for dealing with non-stationary and large-state spaces multi-armed bandit problems. The proposed method has been targeted to the problem of the product recommendation in the online advertising. Through extensive testing with RecoGym, an OpenAI Gym-based reinforcement learning environment for the product recommendation in online advertising, the proposed method outperforms the widespread reinforcement learning schemes such as $epsilon$-Greedy, Upper Confidence (UCB1) and Exponential Weights for Exploration and Exploitation (EXP3).
Sponsored search represents a major source of revenue for web search engines. This popular advertising model brings a unique possibility for advertisers to target users immediate intent communicated through a search query, usually by displaying their ads alongside organic search results for queries deemed relevant to their products or services. However, due to a large number of unique queries it is challenging for advertisers to identify all such relevant queries. For this reason search engines often provide a service of advanced matching, which automatically finds additional relevant queries for advertisers to bid on. We present a novel advanced matching approach based on the idea of semantic embeddings of queries and ads. The embeddings were learned using a large data set of user search sessions, consisting of search queries, clicked ads and search links, while utilizing contextual information such as dwell time and skipped ads. To address the large-scale nature of our problem, both in terms of data and vocabulary size, we propose a novel distributed algorithm for training of the embeddings. Finally, we present an approach for overcoming a cold-start problem associated with new ads and queries. We report results of editorial evaluation and online tests on actual search traffic. The results show that our approach significantly outperforms baselines in terms of relevance, coverage, and incremental revenue. Lastly, we open-source learned query embeddings to be used by researchers in computational advertising and related fields.
In E-commerce advertising, where product recommendations and product ads are presented to users simultaneously, the traditional setting is to display ads at fixed positions. However, under such a setting, the advertising system loses the flexibility to control the number and positions of ads, resulting in sub-optimal platform revenue and user experience. Consequently, major e-commerce platforms (e.g., Taobao.com) have begun to consider more flexible ways to display ads. In this paper, we investigate the problem of advertising with adaptive exposure: can we dynamically determine the number and positions of ads for each user visit under certain business constraints so that the platform revenue can be increased? More specifically, we consider two types of constraints: request-level constraint ensures user experience for each user visit, and platform-level constraint controls the overall platform monetization rate. We model this problem as a Constrained Markov Decision Process with per-state constraint (psCMDP) and propose a constrained two-level reinforcement learning approach to decompose the original problem into two relatively independent sub-problems. To accelerate policy learning, we also devise a constrained hindsight experience replay mechanism. Experimental evaluations on industry-scale real-world datasets demonstrate the merits of our approach in both obtaining higher revenue under the constraints and the effectiveness of the constrained hindsight experience replay mechanism.
Ad creatives are one of the prominent mediums for online e-commerce advertisements. Ad creatives with enjoyable visual appearance may increase the click-through rate (CTR) of products. Ad creatives are typically handcrafted by advertisers and then de livered to the advertising platforms for advertisement. In recent years, advertising platforms are capable of instantly compositing ad creatives with arbitrarily designated elements of each ingredient, so advertisers are only required to provide basic materials. While facilitating the advertisers, a great number of potential ad creatives can be composited, making it difficult to accurately estimate CTR for them given limited real-time feedback. To this end, we propose an Adaptive and Efficient ad creative Selection (AES) framework based on a tree structure. The tree structure on compositing ingredients enables dynamic programming for efficient ad creative selection on the basis of CTR. Due to limited feedback, the CTR estimator is usually of high variance. Exploration techniques based on Thompson sampling are widely used for reducing variances of the CTR estimator, alleviating feedback sparsity. Based on the tree structure, Thompson sampling is adapted with dynamic programming, leading to efficient exploration for potential ad creatives with the largest CTR. We finally evaluate the proposed algorithm on the synthetic dataset and the real-world dataset. The results show that our approach can outperform competing baselines in terms of convergence rate and overall CTR.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا