ﻻ يوجد ملخص باللغة العربية
Organic charge-transfer complexes (CTCs) formed by strong electron acceptor and strong electron donor molecules are known to exhibit exotic effects such as superconductivity and charge density waves. We present a low-temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS) study of a two-dimensional (2D) monolayer CTC of tetrathiafulvalene (TTF) and fluorinated tetracyanoquinodimethane (F4TCNQ), self-assembled on the surface of oxygen-intercalated epitaxial graphene on Ir(111) (G/O/Ir(111)). We confirm the formation of the charge-transfer complex by dI/dV spectroscopy and direct imaging of the singly-occupied molecular orbitals. High-resolution spectroscopy reveals a gap at zero bias, suggesting the formation of a correlated ground state at low temperatures. These results point to the possibility to realize and study correlated ground states in charge-transfer complex monolayers on weakly interacting surfaces.
In a pristine monolayer graphene subjected to a constant electric field along the layer, the Bloch oscillation of an electron is studied in a simple and efficient way. By using the electronic dispersion relation, the formula of a semi-classical veloc
Electronic analogue of generalized Goos-H{a}nchen shifts is investigated in the monolayer graphene superlattice with one-dimensional periodic potentials of square barriers. It is found that the lateral shifts for the electron beam transmitted through
We provide a thorough study of a carbon divacancy, a fundamental but almost unexplored point defect in graphene. Low temperature scanning tunneling microscopy (STM) imaging of irradiated graphene on different substrates enabled us to identify a commo
Hydrodynamic behavior in electronic systems is commonly accepted to be associated with extremely clean samples such that electron-electron collisions dominate and total momentum is conserved. Contrary to this, we show that in monolayer graphene the p
Charge doping in transition metal dichalcogenide is currently a subject of high importance for future electronic and optoelectronic applications. Here we demonstrate chemical doping in CVD grown monolayer (1L) of WS2 by a few commonly used laboratory