ترغب بنشر مسار تعليمي؟ اضغط هنا

SRDTI: Deep learning-based super-resolution for diffusion tensor MRI

77   0   0.0 ( 0 )
 نشر من قبل Qiyuan Tian Dr.
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

High-resolution diffusion tensor imaging (DTI) is beneficial for probing tissue microstructure in fine neuroanatomical structures, but long scan times and limited signal-to-noise ratio pose significant barriers to acquiring DTI at sub-millimeter resolution. To address this challenge, we propose a deep learning-based super-resolution method entitled SRDTI to synthesize high-resolution diffusion-weighted images (DWIs) from low-resolution DWIs. SRDTI employs a deep convolutional neural network (CNN), residual learning and multi-contrast imaging, and generates high-quality results with rich textural details and microstructural information, which are more similar to high-resolution ground truth than those from trilinear and cubic spline interpolation.

قيم البحث

اقرأ أيضاً

129 - Qing Lyu , Hongming Shan , Ge Wang 2019
Magnetic resonance imaging (MRI) is a widely used medical imaging modality. However, due to the limitations in hardware, scan time, and throughput, it is often clinically challenging to obtain high-quality MR images. The super-resolution approach is potentially promising to improve MR image quality without any hardware upgrade. In this paper, we propose an ensemble learning and deep learning framework for MR image super-resolution. In our study, we first enlarged low resolution images using 5 commonly used super-resolution algorithms and obtained differentially enlarged image datasets with complementary priors. Then, a generative adversarial network (GAN) is trained with each dataset to generate super-resolution MR images. Finally, a convolutional neural network is used for ensemble learning that synergizes the outputs of GANs into the final MR super-resolution images. According to our results, the ensemble learning results outcome any one of GAN outputs. Compared with some state-of-the-art deep learning-based super-resolution methods, our approach is advantageous in suppressing artifacts and keeping more image details.
4D-flow magnetic resonance imaging (MRI) is an emerging imaging technique where spatiotemporal 3D blood velocity can be captured with full volumetric coverage in a single non-invasive examination. This enables qualitative and quantitative analysis of hemodynamic flow parameters of the heart and great vessels. An increase in the image resolution would provide more accuracy and allow better assessment of the blood flow, especially for patients with abnormal flows. However, this must be balanced with increasing imaging time. The recent success of deep learning in generating super resolution images shows promise for implementation in medical images. We utilized computational fluid dynamics simulations to generate fluid flow simulations and represent them as synthetic 4D flow MRI data. We built our training dataset to mimic actual 4D flow MRI data with its corresponding noise distribution. Our novel 4DFlowNet network was trained on this synthetic 4D flow data and was capable in producing noise-free super resolution 4D flow phase images with upsample factor of 2. We also tested the 4DFlowNet in actual 4D flow MR images of a phantom and normal volunteer data, and demonstrated comparable results with the actual flow rate measurements giving an absolute relative error of 0.6 to 5.8% and 1.1 to 3.8% in the phantom data and normal volunteer data, respectively.
The analysis of Magnetic Resonance Imaging (MRI) sequences enables clinical professionals to monitor the progression of a brain tumor. As the interest for automatizing brain volume MRI analysis increases, it becomes convenient to have each sequence w ell identified. However, the unstandardized naming of MRI sequences makes their identification difficult for automated systems, as well as makes it difficult for researches to generate or use datasets for machine learning research. In the face of that, we propose a system for identifying types of brain MRI sequences based on deep learning. By training a Convolutional Neural Network (CNN) based on 18-layer ResNet architecture, our system can classify a volumetric brain MRI as a FLAIR, T1, T1c or T2 sequence, or whether it does not belong to any of these classes. The network was evaluated on publicly available datasets comprising both, pre-processed (BraTS dataset) and non-pre-processed (TCGA-GBM dataset), image types with diverse acquisition protocols, requiring only a few slices of the volume for training. Our system can classify among sequence types with an accuracy of 96.81%.
118 - Qing Lyu , Hongming Shan , Ge Wang 2019
Magnetic resonance imaging (MRI) is widely used for screening, diagnosis, image-guided therapy, and scientific research. A significant advantage of MRI over other imaging modalities such as computed tomography (CT) and nuclear imaging is that it clea rly shows soft tissues in multi-contrasts. Compared with other medical image super-resolution (SR) methods that are in a single contrast, multi-contrast super-resolution studies can synergize multiple contrast images to achieve better super-resolution results. In this paper, we propose a one-level non-progressive neural network for low up-sampling multi-contrast super-resolution and a two-level progressive network for high up-sampling multi-contrast super-resolution. Multi-contrast information is combined in high-level feature space. Our experimental results demonstrate that the proposed networks can produce MRI super-resolution images with good image quality and outperform other multi-contrast super-resolution methods in terms of structural similarity and peak signal-to-noise ratio. Also, the progressive network produces a better SR image quality than the non-progressive network, even if the original low-resolution images were highly down-sampled.
Purpose: To propose a deep learning-based reconstruction framework for ultrafast and robust diffusion tensor imaging and fiber tractography. Methods: We propose SuperDTI to learn the nonlinear relationship between diffusion-weighted images (DWIs) and the corresponding tensor-derived quantitative maps as well as the fiber tractography. Super DTI bypasses the tensor fitting procedure, which is well known to be highly susceptible to noise and motion in DWIs. The network is trained and tested using datasets from Human Connectome Project and patients with ischemic stroke. SuperDTI is compared against the state-of-the-art methods for diffusion map reconstruction and fiber tracking. Results: Using training and testing data both from the same protocol and scanner, SuperDTI is shown to generate fractional anisotropy and mean diffusivity maps, as well as fiber tractography, from as few as six raw DWIs. The method achieves a quantification error of less than 5% in all regions of interest in white matter and gray matter structures. We also demonstrate that the trained neural network is robust to noise and motion in the testing data, and the network trained using healthy volunteer data can be directly applied to stroke patient data without compromising the lesion detectability. Conclusion: This paper demonstrates the feasibility of superfast diffusion tensor imaging and fiber tractography using deep learning with as few as six DWIs directly, bypassing tensor fitting. Such a significant reduction in scan time may allow the inclusion of DTI into the clinical routine for many potential applications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا