ترغب بنشر مسار تعليمي؟ اضغط هنا

Ni Schottky barrier on heavily doped phosphorous implanted 4H-SiC

196   0   0.0 ( 0 )
 نشر من قبل Fabrizio Roccaforte
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electrical behavior of Ni Schottky barrier formed onto heavily doped (ND>1019 cm-3) n-type phosphorous implanted silicon carbide (4H-SiC) was investigated, with a focus on the current transport mechanisms in both forward and reverse bias. The forward current-voltage characterization of Schottky diodes showed that the predominant current transport is a thermionic-field emission mechanism. On the other hand, the reverse bias characteristics could not be described by a unique mechanism. In fact, under moderate reverse bias, implantation-induced damage is responsible for the temperature increase of the leakage current, while a pure field emission mechanism is approached with bias increasing. The potential application of metal/4H-SiC contacts on heavily doped layers in real devices are discussed.



قيم البحث

اقرأ أيضاً

We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). Near room temperature, the forward-bias diode characteristics a re well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.
This communication presents a comparative study on the charge transport (in transient and steady state) in bulk n-type doped SiC-polytypes: 3C-SiC, 4H-SiC and 6H-SiC. The time evolution of the basic macrovariables: the electron drift velocity and the non-equilibrium temperature are obtained theoretically by using a Non-Equilibrium Quantum Kinetic Theory, derived from the method of Nonequilibrium Statistical Operator (NSO). The dependence on the intensity and orientation of the applied electric field of this macrovariables and mobility are derived and analyzed. From the results obtained in this paper, the most attractive of these semiconductors for applications requiring greater electronic mobility is the polytype 4H-SiC with the electric field applied perpendicular to the c-axis.
The doping dependence of dry thermal oxidation rates in n-type 4H-SiC was investigated. The oxidation was performed in the temperature range 1000C to 1200C for samples with nitrogen doping in the range of 6.5e15/cm3 to 9.3e18/cm3, showing a clear dop ing dependence. Samples with higher doping concentrations displayed higher oxidation rates. The results were interpreted using a modified Deal-Grove model. Linear and parabolic rate constants and activation energies were extracted. Increasing nitrogen led to an increase in linear rate constant pre-exponential factor from 10-6m/s to 10-2m/s and the parabolic rate constant pre-exponential factor from 10e9m2/s to 10e6m2/s. The increase in linear rate constant was attributed to defects from doping-induced lattice mismatch, which tend to be more reactive than bulk crystal regions. The increase in the diffusion-limited parabolic rate constant was attributed to degradation in oxide quality originating from the doping-induced lattice mismatch. This degradation was confirmed by the observation of a decrease in optical density of the grown oxide films from 1.4 to 1.24. The linear activation energy varied from 1.6eV to 2.8eV, while the parabolic activation energy varied from 2.7eV to 3.3eV, increasing with doping concentration. These increased activation energies were attributed to higher nitrogen content, leading to an increase in effective bond energy stemming from the difference in C-Si (2.82eV) and Si-N (4.26eV) binding energies. This work provides crucial information in the engineering of SiO2 dielectrics for SiC MOS structures, which typically involve regions of very different doping concentrations, and suggests that thermal oxidation at high doping concentrations in SiC may be defect mediated.
We present a structural analysis of the graphene-4HSiC(0001) interface using surface x-ray reflectivity. We find that the interface is composed of an extended reconstruction of two SiC bilayers. The interface directly below the first graphene sheet i s an extended layer that is more than twice the thickness of a bulk SiC bilayer (~1.7A compared to 0.63A). The distance from this interface layer to the first graphene sheet is much smaller than the graphite interlayer spacing but larger than the same distance measured for graphene grown on the (000-1) surface, as predicted previously by ab intio calculations.
The transport properties of a 4H-SiC Schottky diode have been investigated by the Ion Beam Induced Charge (IBIC) technique in lateral geometry through the analysis of the charge collection efficiency (CCE) profile at a fixed applied reverse bias volt age. The cross section of the sample orthogonal to the electrodes was irradiated by a rarefied 4 MeV proton microbeam and the charge pulses have been recorded as function of incident proton position with a spatial resolution of 2 um. The CCE profile shows a broad plateau with CCE values close to 100% occurring at the depletion layer, whereas in the neutral region, the exponentially decreasing profile indicates the dominant role played by the diffusion transport mechanism. Mapping of charge pulses was accomplished by a novel computational approach, which consists in mapping the Gunns weighting potential by solving the electrostatic problem by finite element method and hence evaluating the induced charge at the sensing electrode by a Monte Carlo method. The combination of these two computational methods enabled an exhaustive interpretation of the experimental profiles and allowed an accurate evaluation both of the electrical characteristics of the active region (e.g. electric field profiles) and of basic transport parameters (i. e. diffusion length and minority carrier lifetime).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا